
Fundamentals of Biological Data Analysis

Stefano Allesina and Dmitry Kondrashov

Invalid Date

Table of contents

Organization of the class 9
Learning goals . 9
Approach . 9
Materials . 10
Acknowledgements . 11

1 Refresher 12
1.1 Goal . 12
1.2 Motivation . 12
1.3 Before we start . 13
1.4 What is R? . 13
1.5 RStudio . 14
1.6 How to write a simple program . 14

1.6.1 The most basic operation: assignment 14
1.6.2 Data types . 15
1.6.3 Operators and functions . 17
1.6.4 Getting help . 19
1.6.5 Data structures . 19

1.7 Reading and writing data . 31
1.8 Conditional branching . 33
1.9 Looping . 35
1.10 Useful Functions . 37
1.11 Packages . 39

1.11.1 Installing a package . 39
1.11.2 Loading a package . 39
1.11.3 Example . 40

1.12 Random numbers . 40
1.13 Writing functions . 41
1.14 Organizing and running code . 43
1.15 Documenting the code using knitr . 47
1.16 Resources . 49

2 Visualizing data using ggplot2 50
2.1 Goal . 50
2.2 Introduction to the Grammar of Graphics . 50

2

2.3 Basic ggplot2 . 51
2.4 Building a well-formed graph . 53
2.5 Scatterplots . 57
2.6 Histograms, density and boxplots . 58
2.7 Scales . 66
2.8 List of aesthetic mappings . 69
2.9 List of geometries . 70
2.10 List of scales . 70
2.11 Themes . 71
2.12 Faceting . 71
2.13 Setting features . 74
2.14 Saving graphs . 76
2.15 Multiple layers . 77
2.16 Try on your own data! . 77
2.17 Resources . 77

3 Fundamentals of probability 79
3.1 Sample spaces and random variables . 79
3.2 Probability axioms . 81
3.3 Probability distributions . 81
3.4 Measures of center: medians and means . 82
3.5 Measures of spread: quartiles and variances . 86
3.6 Data as samples from distributions: statistics 88

3.6.1 Law of large numbers . 88
3.6.2 Central Limit Theorem . 89

3.7 Exploration: misleading means . 89
3.8 References . 91

4 Data wrangling 92
4.1 Goal . 92
4.2 What is data wrangling? . 92
4.3 A new data type, tibble . 93
4.4 Selecting rows and columns . 93
4.5 Creating pipelines using %>% . 95
4.6 Producing summaries . 96
4.7 Summaries by group . 97
4.8 Ordering the data . 98
4.9 Renaming columns . 99
4.10 Adding new variables using mutate . 100
4.11 Data wrangling . 102
4.12 From narrow to wide . 103
4.13 From wide to narrow . 103
4.14 Separate: split a column into two or more . 105

3

4.15 Separate rows: from one row to many . 106
4.16 Example: brown bear, brown bear, what do you see? 107
4.17 Resources . 109

5 Distributions and their properties 110
5.1 Objectives: . 110
5.2 Independence . 110

5.2.1 Conditional probability . 110
5.2.2 Independence . 111
5.2.3 Usefulness of independence . 112

5.3 Probability distribution examples (discrete) . 114
5.3.1 Uniform . 114
5.3.2 Binomial . 115
5.3.3 Geometric . 116
5.3.4 Poisson . 118

5.4 Probability distribution examples (continuous) 119
5.4.1 Uniform . 119
5.4.2 exponential . 120
5.4.3 normal distribution . 121

5.5 Application of normal distribution: confidence intervals 123
5.6 Identifying type of distribution in real data . 125

6 Hypothesis testing 131
6.1 Test results vs. the truth . 131
6.2 Types of errors . 132
6.3 Test parameters and p-values . 132
6.4 Multiple comparisons . 134
6.5 Corrections for multiple comparisons . 136
6.6 Two problems with science . 136

6.6.1 Selective reporting . 136
6.6.2 P-hacking . 137

6.7 Readings . 137
6.8 How to fool yourself with p-hacking (and possibly get fired!) 137

7 Likelihood and Bayes 143
7.1 Likelihood and estimation . 143

7.1.1 likelihood vs. probability . 143
7.1.2 maximizing likelihood . 144
7.1.3 discrete probability distributions . 145
7.1.4 continuous probability distributions . 146

7.2 Bayesian thinking . 147
7.2.1 Bayes’ formula . 148
7.2.2 positive predictive value . 148

4

7.2.3 prosecutor’s fallacy . 150
7.2.4 reproducibility in science . 151

7.3 Bayesian inference . 151
7.3.1 Example: capture-recapture . 152
7.3.2 MCMC . 155

7.4 Reading: . 156

8 Review of linear algebra 157
8.1 Solving multivariate linear equations . 157
8.2 Fitting a line to data . 159

8.2.1 Least-squares line . 160
8.3 Linearity and vector spaces . 164

8.3.1 Linear independence and basis vectors 166
8.3.2 Projections and changes of basis . 167

8.4 Matrices as linear operators . 169
8.4.1 Matrices transform vectors . 169
8.4.2 calculating eigenvalues . 170

9 Linear models 174
9.1 Regression toward the mean . 174
9.2 Finding the best fitting line: Linear Regression 177

9.2.1 Solving a linear model — some linear algebra 178
9.2.2 Minimizing the sum of squares . 180
9.2.3 Assumptions of linear regression . 182

9.3 Linear regression in action . 182
9.4 A regression gone wild . 184
9.5 More advanced topics . 188

9.5.1 Categorical variables in linear models 188
9.5.2 Interactions in linear models . 189
9.5.3 Regression diagnostics . 190
9.5.4 Plotting the residuals . 192
9.5.5 Q-Q Plot . 195
9.5.6 Cook’s distance . 198
9.5.7 Leverage . 200
9.5.8 Running all diagnostics . 203

9.6 Transforming the data . 203

10 ANOVA 210
10.1 Analysis of variance . 210

10.1.1 ANOVA assumptions . 211
10.1.2 How one-way ANOVA works . 211

10.2 Inference in one-way ANOVA . 212
10.2.1 Example of comparing diets . 213

5

10.2.2 Comparison of theory and ANOVA output 215
10.3 Further steps . 217

10.3.1 Post-hoc analysis . 217
10.3.2 Example of plant growth data . 218
10.3.3 Two-way ANOVA . 220

10.4 Investigate the UC salaries dataset . 220
10.4.1 A word of caution about unbalanced designs 221

11 Model Selection 222
11.1 Goal . 222
11.2 Problems . 223
11.3 Approaches based on maximum-likelihoods . 223

11.3.1 Likelihood function . 223
11.3.2 Discrete probability distributions . 224
11.3.3 Continuous probability distributions . 224

11.4 Likelihoods for linear regression . 224
11.5 Likelihood-ratio tests . 225
11.6 AIC . 233
11.7 Other information-based criteria . 234
11.8 Bayesian approaches to model selection . 234

11.8.1 Marginal likelihoods . 234
11.8.2 Bayes factors . 235
11.8.3 Bayes factors in practice . 235

11.9 Using tidymodels for modeling and cross-validation 237
11.9.1 Prediction and cross-validation . 243

11.10Other approaches . 247
11.10.1 Minimum description length . 247
11.10.2 Cross validation . 247

11.11References and further reading: . 253

12 Principal Component Analysis 254
12.1 Input . 254
12.2 Singular Value Decomposition . 255
12.3 SVD and PCA . 259

12.3.1 PCA in R—from scratch . 262
12.3.2 PCA in R — the easy way . 266

12.4 Multidimensional scaling . 267
12.4.1 Goal of MDS . 267
12.4.2 Classic MDS . 268

12.5 Readings . 272
12.5.1 Exercise: PCA sommelier . 272

6

13 Clustering 273
13.1 K-means algorithm . 273

13.1.1 Assumptions of K-means algorithm . 278
13.2 Hierarchical clustering . 282

13.2.1 Agglomerative clustering . 282
13.2.2 Clustering penguin data using hierarchical methods 285

13.3 Clustering analysis and validation . 287
13.3.1 Hopkins statistic . 287
13.3.2 Elbow method . 288
13.3.3 Silhouette Plot . 289
13.3.4 Lazy way: use all the methods! . 290
13.3.5 Validation using bootstrapping . 290

13.4 Application to breast cancer data . 294
13.5 References: . 298

14 Generalized linear models 299
14.1 Goal . 299
14.2 Introduction . 300

14.2.1 Model structure . 300
14.3 Binary data . 300

14.3.1 Logistic regression . 301
14.3.2 A simple example . 303
14.3.3 Exercise in class: College admissions . 306

14.4 Count data . 307
14.4.1 Poisson regression . 307
14.4.2 Exercise in class: Number of genomes 308
14.4.3 Underdispersed and Overdispersed data 308
14.4.4 Exercise in class: Number of genomes 309
14.4.5 Separate distribution for the zeros . 309

14.5 Other GLMs . 310
14.6 Readings and homework . 310

15 Machine learning methods for classification 311
15.1 Introduction . 311
15.2 Naive Bayes classifier . 311

15.2.1 Naive Bayes penguin example . 312
15.2.2 Breast cancer data . 315

15.3 Decision Trees . 319
15.3.1 Penguin data . 320
15.3.2 Breast cancer data . 322

15.4 Random Forests . 323
15.4.1 Penguin data . 324
15.4.2 Cancer data . 326

7

15.5 References . 328

16 Monte Carlo methods 329
16.1 Idea . 329
16.2 History . 329
16.3 Bootstrapping . 330

16.3.1 Example 1 . 330
16.4 Example 2 . 331
16.5 Hypothesis testing using Monte Carlo . 333

16.5.1 Example: penguin breeding pairs . 333
16.6 Randomizing binary tables (bipartite networks) 335

16.6.1 Randomizing the network: checkerboard swapping 336
16.6.2 Randomizing the network: curveball . 337
16.6.3 Example: Darwin’s finches . 338

17 Time series: modeling and forecasting 340
17.1 Goals: . 340
17.2 Time series format and plotting . 340

17.2.1 Visualizing the data . 342
17.3 Decomposition of time series . 345

17.3.1 Decomposition of time series . 345
17.3.2 Classic decomposition: . 347
17.3.3 STL decomposition . 348

17.4 Relationships within and between time series 349
17.4.1 Visualizing correlation between different variables 349
17.4.2 Autocorrelation . 353
17.4.3 Perennial warning: correlations are not causation! 358

17.5 Modeling and forecasting . 359
17.5.1 Forecasting using smoothing methods 359

17.6 References and further reading: . 360

8

Organization of the class

Learning goals

• R tools for visualizing and analyzing data

– exploration of tidyverse
– dplyr, tidyr and readr for data wrangling and organization
– ggplot2 for visualization
– specific packages and functions for statistical analysis

• Theory to perform statistical inference

– assumptions of different methods
– hypothesis testing
– estimation of parameters
– model building and selection

• Avoiding common errors

– when (not) to use a statistical method
– sneaky paradoxes
– phantom effects

• Work on your own data

– analyze data
– produce graphics
– write up a report
– present to class

Approach

• Mix of theory and practice
• Apply what you’re learning to your own data

9

Materials

Week 0

• R refresher @ref(refresher)

Week 1

• Using ggplot2 to produce publication-ready figures
• Review of probability

Week 2

• Data wrangling in tidyverse
• Probability distributions

Week 3

• Hypothesis testing
• Likelihood

Week 4

• Linear algebra primer
• Linear models

Week 5

• Analysis of variance
• Model selection

Week 6

• Principal Component Analysis and SVD
• Multidimensional scaling and Clustering

10

Week 7

• Generalized Linear Models
• Machine Learning and cross validation

Week 8

• Monte Carlo and boostrap
• Modeling time-series data

Week 9

Thanksgiving break

Week 10

• Student presentations 1
• Student presentations 2

Acknowledgements

Zach Miller for TAing the first iteration of the class, and for contributing materials and com-
ments; Julia Smith for TAing the second iteration; Cassie Manrique for TAing the third
iteration; Amatullah Mir for this year. Development of the class was partially supported by
the Burroughs Wellcome Fund through the program “Quantitative and statistical thinking in
the life sciences” (Stefano Allesina, PI).

11

https://www.bwfund.org/grant-programs/institutional-programs/quantitative-and-statistical-thinking-life-sciences/grant
https://www.bwfund.org/grant-programs/institutional-programs/quantitative-and-statistical-thinking-life-sciences/grant

1 Refresher

1.1 Goal

Introduce the statistical software R, and show how it can be used to analyze biological data
in an automated, replicable way. Showcase the RStudio development environment, illustrate
the notion of assignment, present the main data structures available in R. Show how to read
and write data, how to execute simple programs, and how to modify the stream of execution
of a program through conditional branching and looping. Introduce the use of packages and
user-defined functions.

1.2 Motivation

When it comes to analyzing data, there are two competing paradigms. First, one could use
point-and-click software with a graphical user interface, such as Excel, to perform calculations
and draw graphs; second, one could write programs that can be run to perform the analysis of
the data, the generation of tables and statistics, and the production of figures automatically.

This latter approach is to be preferred, because it allows for the automation of analysis, it
requires a good documentation of the procedures, and is completely replicable.

A few motivating examples:

• You have written code to analyze your data. You receive from your collaborators a new
batch of data. With simple modifications of your code, you can update your results,
tables and figures automatically.

• A new student joins the laboratory. The new student can read the code and understand
the analysis without the need of a lab mate showing the procedure step-by-step.

• The reviewers of your manuscript ask you to slightly alter the analysis. Rather than
having to start over, you can modify a few lines of code and satisfy the reviewers.

Here we introduce R, which can help you write simple programs to analyze your data, perform
statistical analysis, and draw beautiful figures.

12

1.3 Before we start

To follow this tutorial, you will need to install R and RStudio

• Install R: download and install R from this page. Choose the right architecture (Windows,
Mac, Linux). If possible, install the latest release.

• Install RStudio: go to this page and download the “RStudio Desktop Open Source
License”.

• Install R packages: launch RStudio. Click on “Packages” in the bottom-right panel.
Click on “Install”: a dialog window will open. Type tidyverse in the field “Packages”
and click on “Install”. This might take a few minutes, and ask you to download further
packages.

1.4 What is R?

R is a statistical software that is completely programmable. This means that one can write
a program (script) containing a series of commands for the analysis of data, and execute
them automatically. This approach is especially good as it makes the analysis of data well-
documented, and completely replicable.

R is free software: anyone can download its source code, modify it, and improve it. The
R community of users is vast and very active. In particular, scientists have enthusiastically
embraced the program, creating thousands of packages to perform specific types of analysis,
and adding many new capabilities. You can find a list of official packages (which have been
vetted by R core developers) here; many more are available on GitHub and other websites.

The main hurdle new users face when approaching R is that it is based on a command line
interface: when you launch R, you simply open a console with the character > signaling that
R is ready to accept an input. When you write a command and press Enter, the command is
interpreted by R, and the result is printed immediately after the command. For example,

1 + 1

[1] 2

A little history: R was modeled after the commercial statistical software S by Robert Gentleman
and Ross Ihaka. The project was started in 1992, first released in 1994, and the first stable
version appeared in 2000. Today, R is managed by the R Core Team.

13

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/web/packages/available_packages_by_name.html

1.5 RStudio

For this introduction, we’re going to use RStudio, an Integrated Development Environment
(IDE) for R. The main advantage is that the environment will look identical irrespective of
your computer architecture (Linux, Windows, Mac). Also, RStudio makes writing code much
easier by automatically completing commands and file names (simply type the beginning of
the name and press Tab), and allowing you to easily inspect data and code.

Typically, an RStudio window contains four panels:

• Console This is a panel containing an instance of R. For this tutorial, we will work
mainly in this panel.

• Source code In this panel, you can write a program, save it to a file pressing Ctrl +
S and then execute it by pressing Ctrl + Shift + S.

• Environment This panel lists all the variables you created (more on this later); another
tab shows you the history of the commands you typed.

• Plots This panel shows you all the plots you drew. Other tabs allow you to ac-
cess the list of packages you have loaded, and the help page for commands (just type
help(name_of_command) in the Console) and packages.

1.6 How to write a simple program

An R program is simply a list of commands, which are executed one after the other. The
commands are written in a text file (with extension .R). When R executes the program, it
will start from the beginning of the file and proceed toward the end of the file. Every time
R encounters a command, it will execute it. Special commands can modify this basic flow of
the program by, for example, executing a series of commands only when a condition is met, or
repeating the execution of a series of commands multiple times.

Note that if you were to copy and paste (or type) the code into the Console you would obtain
exactly the same result. Writing a program is advantageous, however, because the analysis
can be automated, and the code shared with other researchers. Moreover, after a while you
will have a large code base, so that you can recycle much of your code.

We start by working on the console, and then start writing simple scripts.

1.6.1 The most basic operation: assignment

The most basic operation in any programming language is the assignment. In R, assignment is
marked by the operator <- (can be typed quickly using Alt -). When you type a command
in R, it is executed, and the output is printed in the Console. For example:

14

sqrt(9)

[1] 3

If we want to save the result of this operation, we can assign it to a variable. For example:

x <- sqrt(9)
x

[1] 3

What has happened? We wrote a command containing an assignment operator (<-). R has
evaluated the right-hand-side of the command (sqrt(9)), and has stored the result (3) in a
newly created variable called x. Now we can use x in our commands: every time the command
needs to be evaluated, the program will look up which value is associated with the variable x,
and substitute it. For example:

x * 2

[1] 6

1.6.2 Data types

R provides different types of data that can be used in your programs. For each variable x,
calling class(x) prints the type of the variable. The basic data types are:

• logical, taking only two possible values: TRUE and FALSE

v <- TRUE
class(v)

[1] "logical"

• numeric, storing real numbers (actually, their approximations, as computers have limited
memory and thus cannot store numbers like �, or even 0.2)

v <- 3.77
class(v)

15

https://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/

[1] "numeric"

• Real numbers can also be specified using scientific notation:

v <- 6.022e23 # 6.022�10^23 (Avogadro's number)
class(v)

[1] "numeric"

• integer, storing whole numbers

v <- 23L # the L signals that this should be stored as integer
class(v)

[1] "integer"

• complex, storing complex numbers (i.e., with a real and an imaginary part)

v <- 23 + 5i # the i marks the imaginary part
class(v)

[1] "complex"

• character, for strings, characters and text

v <- 'a string' # you can use single or double quotes
class(v)

[1] "character"

In R, the value and type of a variable are evaluated at run-time. This means that you can
recycle the names of variables. This is very handy, but can make your programs more difficult
to read and to debug (i.e., find mistakes). For example:

x <- '2.3' # this is a string
x

[1] "2.3"

16

x <- 2.3 # this is numeric
x

[1] 2.3

1.6.3 Operators and functions

Each data type supports a certain number of operators and functions. For example, numeric
variables can be combined with + (addition), - (subtraction), * (multiplication), / (division),
and ^ (or **, exponentiation). A possibly unfamiliar operator is the modulo (%%), calculating
the remainder of an integer division:

5 %% 3

[1] 2

meaning that 5 %/% 3 (5 integer divided by 3) is 1 with a remainder of 2

The modulo operator is useful to determine whether a number is divisible for another: if y is
divisible by x, then y %% x is 0.

R provides many built-in functions: each functions has a name, followed by round parentheses
surrounding the (possibly optional) function arguments. For example, these functions operate
on numeric variables:

• abs(x) absolute value
• sqrt(x) square root
• round(x, digits = 3) round x to three decimal digits
• cos(x) cosine (also supported are all the usual trigonometric functions)
• log(x) natural logarithm (use log10 for base 10 logarithms)
• exp(x) calculating 𝑒𝑥

Similarly, character variables have their own set of functions, such as:

• toupper(x) make uppercase
• nchar(x) count the number of characters in the string
• paste(x, y, sep = "_") concatenate strings, joining them using the separator _
• strsplit(x, "_") separate the string using the separator _

Calling a function meant for a certain data type on another will cause errors. If sensible, you
can convert a type into another. For example:

17

v <- "2.13"
class(v)

[1] "character"

if we call v * 2, we get an error.
to avoid it, we can convert v to numeric:
as.numeric(v) * 2

[1] 4.26

If sensible, you can use the comparison operators > (greater), < (lower), == (equals), != (differs),
>= and <=, returning a logical value:

2 == sqrt(4)

[1] TRUE

2 < sqrt(4)

[1] FALSE

2 <= sqrt(4)

[1] TRUE

Exercise:

Why are two equal signs (==) used to check that two values are equal? What
happens if you use only one = sign?

Similarly, you can concatenate several comparison and logical variables using & (and), | (or),
and ! (not):

(2 > 3) & (3 > 1)

[1] FALSE

18

(2 > 3) | (3 > 1)

[1] TRUE

1.6.4 Getting help

If you want to know more about a function, type ?my_function_name in the console (e.g.,
?abs). This will open the help page in one of the panels on the right. The same can be
accomplished calling help(abs). For more complex questions, check out stackoverflow.

1.6.5 Data structures

Besides these simple types, R provides structured data types, meant to collect and organize
multiple values.

1.6.5.1 Vectors

The most basic data structure in R is the vector, which is an ordered collection of values of
the same type. Vectors can be created by concatenating different values with the function c()
(“combine”):

x <- c(2, 3, 5, 27, 31, 13, 17, 19)
x

[1] 2 3 5 27 31 13 17 19

You can access the elements of a vector by their index: the first element is indexed at 1, the
second at 2, etc.

x[3]

[1] 5

x[8]

[1] 19

19

x[9] # what if the element does not exist?

[1] NA

NA stands for “Not Available”. Other special values are NaN (Not a Number, e.g., 0/0), Inf
(Infinity, e.g., 1/0), and NULL (variable undefined). You can test for special values using
is.na(x), is.infinite(x), is.null(x), etc.

Note that in R a single number (string, logical) is a vector of length 1 by default. That’s why
if you type 3 in the console you see [1] 3 in the output.

You can extract several elements at once (i.e., create another vector), using the colon (:)
command, or by concatenating the indices:

x[1:3]

[1] 2 3 5

x[4:7]

[1] 27 31 13 17

x[c(1,3,5)]

[1] 2 5 31

You can also use a vector of logical variables to extract values from vectors. For example,
suppose we have two vectors:

sex <- c("M", "M", "F", "M", "F") # sex of Drosophila
weight <- c(0.230, 0.281, 0.228, 0.260, 0.231) # weight in mg

and that we want to extract only the weights for the males.

sex == "M"

[1] TRUE TRUE FALSE TRUE FALSE

returns a vector of logical values, which we can use to subset the data:

20

weight[sex == "M"]

[1] 0.230 0.281 0.260

Given that R was born for statistics, there are many statistical functions you can perform on
vectors:

length(x)

[1] 8

min(x)

[1] 2

max(x)

[1] 31

sum(x) # sum all elements

[1] 117

prod(x) # multiply all elements

[1] 105436890

median(x) # median value

[1] 15

mean(x) # arithmetic mean

[1] 14.625

21

var(x) # unbiased sample variance

[1] 119.4107

mean(x ^ 2) - mean(x) ^ 2 # population variance

[1] 104.4844

summary(x) # print a summary

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 4.50 15.00 14.62 21.00 31.00

You can generate vectors of sequential numbers using the colon command:

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

For more complex sequences, use seq:

seq(from = 1, to = 5, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

To repeat a value or a sequence several times, use rep:

rep("abc", 3)

[1] "abc" "abc" "abc"

rep(c(1, 2, 3), 3)

22

[1] 1 2 3 1 2 3 1 2 3

Exercise:

• Create a vector containing all the even numbers between 2 and 100 (inclusive)
and store it in variable z.

• Extract all the elements of z that are divisible by 12. How many elements
match this criterion?

• What is the sum of all the elements of z?
• Is it equal to 51 ⋅ 50?
• What is the product of elements 5, 10 and 15 of z?
• Does seq(2, 100, by = 2) produce the same vector as (1:50) * 2?
• What happens if you type z ^ 2?

1.6.5.2 Matrices

A matrix is a two-dimensional table of values. In case of numeric values, you can perform the
usual operations on matrices (product, inverse, decomposition, etc.):

A <- matrix(c(1, 2, 3, 4), 2, 2) # values, nrows, ncols
A

[,1] [,2]
[1,] 1 3
[2,] 2 4

A %*% A # matrix product

[,1] [,2]
[1,] 7 15
[2,] 10 22

solve(A) # matrix inverse

[,1] [,2]
[1,] -2 1.5
[2,] 1 -0.5

23

A %*% solve(A) # this should return the identity matrix

[,1] [,2]
[1,] 1 0
[2,] 0 1

B <- matrix(1, 3, 2) # you can fill the whole matrix with a single number (1)
B

[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1

B %*% t(B) # transpose

[,1] [,2] [,3]
[1,] 2 2 2
[2,] 2 2 2
[3,] 2 2 2

Z <- matrix(1:9, 3, 3) # by default, matrices are filled by column
Z

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

To determine the dimensions of a matrix, use dim:

dim(B)

[1] 3 2

24

dim(B)[1]

[1] 3

nrow(B)

[1] 3

dim(B)[2]

[1] 2

ncol(B)

[1] 2

nrow(B)

[1] 3

Use indices to access a particular row/column of a matrix:

Z

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

Z[1,] # first row

[1] 1 4 7

25

Z[, 2] # second column

[1] 4 5 6

Z [1:2, 2:3] # submatrix with coefficients in first two rows, and second and third column

[,1] [,2]
[1,] 4 7
[2,] 5 8

Z[c(1, 3), c(1, 3)] # indexing non-adjacent rows/columns

[,1] [,2]
[1,] 1 7
[2,] 3 9

Some functions use all the elements of the matrix:

sum(Z)

[1] 45

mean(Z)

[1] 5

Some functions apply the operation across a given dimension (e.g., columns) of the matrix:

rowSums(Z) # returns a vector of the sums of the values in each row

[1] 12 15 18

colSums(Z) # does the same for columns

[1] 6 15 24

26

rowMeans(Z) # returns a vector of the means of the values in each row

[1] 4 5 6

colMeans(Z) # does the same for columns

[1] 2 5 8

1.6.5.3 Arrays

If you need tables with more than two dimensions, use arrays:

M <- array(1:24, c(4, 3, 2))
M

, , 1

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

, , 2

[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24

You can still determine the dimensions using:

dim(M)

[1] 4 3 2

and access the elements as done for matrices. One thing you should be paying attention to: R
drops dimensions that are not needed. So, if you access a “slice” of a 3-dimensional array:

27

M[, , 1]

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

you obtain a matrix:

dim(M[, , 1])

[1] 4 3

This can be problematic, for example, when your code expects an array and R turns your data
into a matrix (or you expect a matrix but find a vector). To avoid this behavior, add drop =
FALSE when subsetting:

dim(M[, , 1, drop = FALSE])

[1] 4 3 1

1.6.5.4 Lists

Vectors are good if each element is of the same type (e.g., numbers, strings). Lists are used
when we want to store elements of different types, or more complex objects (e.g., vectors,
matrices, even lists of lists). Each element of the list can be referenced either by its index, or
by a label:

mylist <- list(Names = c("a", "b", "c", "d"), Values = c(1, 2, 3))
mylist

$Names
[1] "a" "b" "c" "d"

$Values
[1] 1 2 3

28

mylist[[1]] # access first element using index

[1] "a" "b" "c" "d"

mylist[[2]] # access second element by index

[1] 1 2 3

mylist$Names # access second element by label

[1] "a" "b" "c" "d"

mylist[["Names"]] # another way to access by label

[1] "a" "b" "c" "d"

mylist[["Values"]][3] # access third element in second vector

[1] 3

1.6.5.5 Data frames

Data frames contain data organized like in a spreadsheet. The columns (typically representing
different measurements) can be of different types (e.g., a column could be the date of measure-
ment, another the weight of the individual, or the volume of the cell, or the treatment of the
sample), while the rows typically represent different samples.

When you read a spreadsheet file in R, it is automatically stored as a data frame. The difference
between a matrix and a data frame is that in a matrix all the values are of the same type (e.g.,
all numeric), while in a data frame each column can be of a different type.

Because typing a data frame by hand would be tedious, let’s use a data set that is already
available in R:

data(trees) # girth, height and volume of cherry trees
str(trees) # structure of data frame

29

'data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 ...
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...

ncol(trees)

[1] 3

nrow(trees)

[1] 31

head(trees) # print the first few rows

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

summary(trees) # Quickly get an overview of the data frame.

Girth Height Volume
Min. : 8.30 Min. :63 Min. :10.20
1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20
Mean :13.25 Mean :76 Mean :30.17
3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
Max. :20.60 Max. :87 Max. :77.00

trees$Girth # select column by name

[1] 8.3 8.6 8.8 10.5 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4 11.4 11.7 12.0
[16] 12.9 12.9 13.3 13.7 13.8 14.0 14.2 14.5 16.0 16.3 17.3 17.5 17.9 18.0 18.0
[31] 20.6

30

trees$Height[1:5] # select column by name; return first five elements

[1] 70 65 63 72 81

trees[1:3,] #select rows 1 through 3

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2

trees[1:3,]$Volume # select rows 1 through 3; return column Volume

[1] 10.3 10.3 10.2

trees <- rbind(trees, c(13.25, 76, 30.17)) # add a row
trees_double <- cbind(trees, trees) # combine columns
colnames(trees) <- c("Circumference", "Height", "Volume") # change column names

Exercise:

• What is the average height of the cherry trees?
• What is the average girth of those that are more than 75 ft tall?
• What is the maximum height of trees with a volume between 15 and 35 ft3?

1.7 Reading and writing data

In most cases, you will not generate your data in R, but import it from a file. By far, the best
option is to have your data in a comma separated value text file or in a tab separated file.
Then, you can use the function read.csv (or read.table) to import your data. The syntax
of the functions is as follows:

read.csv("MyFile.csv") # read the file MyFile.csv
read.csv("MyFile.csv", header = TRUE) # the file has a header
read.csv("MyFile.csv", sep = ';') # specify the column separator
read.csv("MyFile.csv", skip = 5) # skip the first 5 lines

31

Note that columns containing strings are typically converted to factors (categorical values, use-
ful when performing regressions). To avoid this behavior, you can specify stringsAsFactors
= FALSE when calling the function.

Similarly, you can save your data frames using write.table or write.csv. Suppose you want
to save the data frame MyDF:

write.csv(MyDF, "MyFile.csv")
write.csv(MyDF, "MyFile.csv", append = TRUE) # append to the end of the file
write.csv(MyDF, "MyFile.csv", row.names = TRUE) # include the row names
write.csv(MyDF, "MyFile.csv", col.names = FALSE) # do not include column names

Let’s look at an example: Read a file containing data on the 6th chromosome for a number of
Europeans (Data adapted from Stanford HGDP SNP Genotyping Data by John Novembre).
This example shows that you can read data directly from the internet!

The actual URL is
https://github.com/StefanoAllesina/BSD-QBio4/raw/master/tutorials/basic_computing_1/data/H938_Euro_chr6.geno
ch6 <- read.table("https://tinyurl.com/y7vctq3v",

header = TRUE, stringsAsFactors = FALSE)

where header = TRUE means that we want to take the first line to be a header containing the
column names. How big is this table?

dim(ch6)

[1] 43141 7

we have 7 columns, but more than 40k rows! Let’s see the first few:

head(ch6)

CHR SNP A1 A2 nA1A1 nA1A2 nA2A2
1 6 rs4959515 A G 0 17 107
2 6 rs719065 A G 0 26 98
3 6 rs6596790 C T 0 4 119
4 6 rs6596796 A G 0 22 102
5 6 rs1535053 G A 5 39 80
6 6 rs12660307 C T 0 3 121

and the last few:

32

tail(ch6)

CHR SNP A1 A2 nA1A1 nA1A2 nA2A2
43136 6 rs10946282 C T 0 16 108
43137 6 rs3734763 C T 19 56 48
43138 6 rs960744 T C 32 60 32
43139 6 rs4428484 A G 1 11 112
43140 6 rs7775031 T C 26 56 42
43141 6 rs12213906 C T 1 11 112

The data contains the number of homozygotes (nA1A1, nA2A2) and heterozygotes (nA1A2), for
43,141 single nucleotide polymorphisms (SNPs) obtained by sequencing European individu-
als:

• CHR The chromosome (6 in this case)
• SNP The identifier of the Single Nucleotide Polymorphism
• A1 One of the alleles
• A2 The other allele
• nA1A1 The number of individuals with the particular combination of alleles.

Exercise:

• How many individuals were sampled? Find the maximum of the sum nA1A1 +
nA1A2 + nA2A2. Note: you can access the columns by index (e.g., ch6[,5]),
or by name (e.g., ch6$nA1A1, or also ch6[,"nA1A1"]).

• Try using the function rowSums to obtain the same result.
• For how many SNPs do we have that all sampled individuals are homozygotes

(i.e., all A1A1 or all A2A2)?
• For how many SNPs, are more than 99% of the sampled individuals homozy-

gous?

1.8 Conditional branching

Now we turn to writing actual programs in the Source code panel. To start a new R program,
press Ctrl + Shift + N. This will open an Untitled script. Save the script by pressing Ctrl
+ S: save it as conditional.R in the directory programming_skills/sandbox/. To make
sure you’re working in the directory where the script is contained, on the menu on the top
choose Session -> Set Working Directory -> To Source File Location.

Now type the following script:

33

print("Hello world!")
x <- 4
print(x)

and execute the script by pressing Ctrl + Shift + S. You should see Hello World! and 4
printed in your console.

As you saw in this simple example, when R executes the program, it starts from the top
and proceeds toward the end of the file. Every time it encounters a command (for example,
print(x), printing the value of x into the console), it executes it.

When we want a certain block of code to be executed only when a certain condition is met,
we can write a conditional branching point. The syntax is as follows:

if (condition is met){
execute this block of code

} else {
execute this other block of code

}

For example, add these lines to the script conditional.R, and run it again:

print("Hello world!")
x <- 4
print(x)
if (x %% 2 == 0){
my_message <- paste(x, "is even")

} else {
my_message <- paste(x, "is odd")

}
print(my_message)

We have created a conditional branching point, so that the value of my_message changes
depending on whether x is even (and thus the remainder of the integer division by 2 is 0), or
odd. Change the line x <- 4 to x <- 131 and run it again.

Exercise: What does this do?

x <- 36
if (x > 20){

x <- sqrt(x)
} else {

x <- x ^ 2

34

}
if (x > 7) {

print(x)
} else if (x %% 2 == 1){

print(x + 1)
}

1.9 Looping

Another way to change the flow of the program is to write a loop. A loop is simply a series
of commands that are repeated a number of times. For example, you want to run the same
analysis on different data sets that you collected; you want to plot the results contained in a
set of files; you want to test your simulation over a number of parameter sets; etc.

R provides you with two ways to loop over blocks of commands: the for loop, and the while
loop. Let’s start with the for loop, which is used to iterate over a vector (or a list): for each
value of the vector, a series of commands will be run, as shown by the following example, which
you can type in a new script called forloop.R.

myvec <- 1:10 # vector with numbers from 1 to 10

for (i in myvec) {
a <- i ^ 2
print(a)

}

In the code above, the variable i takes the value of each element of myvec in sequence. Inside
the block defined by the for loop, you can use the variable i to perform operations.

The anatomy of the for statement:

for (variable in list_or_vector) {
execute these commands

} # automatically moves to the next value

For loops are used when you know that you want to perform the analysis using a given set of
values (e.g., run over all files of a directory, all samples in your data, all sequences of a fasta
file, etc.).

The while loop is used when the commands need to be repeated while a certain condition is
true, as shown by the following example, which you can type in a script called whileloop.R:

35

i <- 1

while (i <= 10) {
a <- i ^ 2
print(a)
i <- i + 1

}

The script performs exactly the same operations we wrote for the for loop above. Note that
you need to update the value of i, (using i <- i + 1), otherwise the loop will run forever
(infinite loop—to terminate click on the stop button in the top-right corner of the console).
The anatomy of the while statement:

while (condition is met) {
execute these commands

} # beware of infinite loops: remember to update the condition!

You can break a loop using the command break. For example:

i <- 1

while (i <= 10) {
if (i > 5) {

break
}
a <- i ^ 2
print(a)
i <- i + 1

}

Exercise: What does this do? Try to guess what each loop does, and then create
and run a script to confirm your intuition.

z <- seq(1, 1000, by = 3)
for (k in z) {

if (k %% 4 == 0) {
print(k)

}
}

36

z <- readline(prompt = "Enter a number: ")
z <- as.numeric(z)
isthisspecial <- TRUE
i <- 2
while (i < z) {

if (z %% i == 0) {
isthisspecial <- FALSE
break

}
i <- i + 1

}
if (isthisspecial == TRUE) {

print(z)
}

1.10 Useful Functions

Here’s a short list of useful functions that will help you write your programs:

• range(x): minimum and maximum of a vector x
• sort(x): sort a vector x
• unique(x): remove duplicate entries from vector x
• which(x == a): returns a vector of the indices of x having value a
• list.files("path_to_directory"): list the files in a directory (current directory if

not specified)
• table(x) build a table of frequencies

Exercises: What does this code do? For each snippet of code, first try to guess
what will happen. Then, write a script and run it to confirm your intuition.

v <- c(1, 3, 5, 5, 3, 1, 2, 4, 6, 4, 2)
v <- sort(unique(v))
for (i in v){

if (i > 2){
print(i)

}
if (i > 4){
break

}
}

37

x <- 1:100
x <- x[which(x %% 7 == 0)]

my_amount <- 10
while (my_amount > 0){

my_color <- NA
while(is.na(my_color)){
tmp <- readline(prompt="Do you want to bet on black or red? ")
tmp <- tolower(tmp)
if (tmp == "black") my_color <- "black"
if (tmp == "red") my_color <- "red"
if (is.na(my_color)) print("Please enter either red or black")

}
my_bet <- NA
while(is.na(my_bet)){
tmp <- readline(prompt="How much do you want to bet? ")
tmp <- as.numeric(tmp)
if (is.numeric(tmp) == FALSE){

print("Please enter a number")
} else {

if (tmp > my_amount){
print("You don't have enough money!")

} else {
my_bet <- tmp
my_amount <- my_amount - tmp

}
}

}
lady_luck <- sample(c("red", "black"), 1)
if (lady_luck == my_color){
my_amount <- my_amount + 2 * my_bet
print(paste("You won!! Now you have", my_amount, "gold doubloons"))

} else {
print(paste("You lost!! Now you have", my_amount, "gold doubloons"))

}
}

38

1.11 Packages

R is the most popular statistical computing software among biologists due to its highly spe-
cialized packages, often written by biologists for biologists. You can contribute a package
too! The RStudio support (goo.gl/harVqF) provides guidance on how to start developing R
packages and Hadley Wickham’s free online book (r-pkgs.had.co.nz) will make you a pro.

You can find highly specialized packages to address your research questions. Here are some
suggestions for finding an appropriate package. The Comprehensive R Archive Network
(CRAN) offers several ways to find specific packages for your task. You can either browse
packages (goo.gl/7oVyKC) and their short description or select a scientific field of interest
(goo.gl/0WdIcu) to browse through a compilation of packages related to each discipline.

From within your R terminal or RStudio you can also call the function RSiteSearch("KEYWORD"),
which submits a search query to the website search.r-project.org. The website rseek.org
casts an even wider net, as it not only includes package names and their documentation
but also blogs and mailing lists related to R. If your research interests relate to high-
throughput genomic data, you should have a look the packages provided by Bioconductor
(goo.gl/7dwQlq).

1.11.1 Installing a package

To install a package type

install.packages("name_of_package")

in the Console, or choose the panel Packages and then click on Install in RStudio.

1.11.2 Loading a package

To load a package type

library(name_of_package)

or call the command into your script. If you want your script to automatically install a package
in case it’s missing, use this boilerplate:

if (!require(needed_package, character.only = TRUE, quietly = TRUE)) {
install.packages(needed_package)
library(needed_package, character.only = TRUE)

}

39

http://goo.gl/harVqF
http://r-pkgs.had.co.nz
http://goo.gl/7oVyKC
http://goo.gl/0WdIcu
http://search.r-project.org
http://rseek.org
http://goo.gl/7dwQlq

1.11.3 Example

For example, say we want to access the dataset bacteria, which reports the incidence of H.
influenzae in Australian children. The dataset is contained in the package MASS.

First, we need to load the package:

library(MASS)

Now we can load the data:

data(bacteria)
bacteria[1:3,]

y ap hilo week ID trt
1 y p hi 0 X01 placebo
2 y p hi 2 X01 placebo
3 y p hi 4 X01 placebo

1.12 Random numbers

To perform randomization, or any simulation, we typically need to draw random numbers. R
has functions to sample random numbers from very many different statistical distributions.
For example:

runif(5) # sample 5 numbers from the uniform distribution between 0 and 1

[1] 0.6503272 0.1023911 0.4599482 0.3397160 0.9994826

runif(5, min = 1, max = 9) # set the limits of the uniform distribution

[1] 7.254342 8.465404 5.448319 2.452893 4.992274

rnorm(3) # three values from standard normal

[1] -1.3712149 0.4441291 0.6004111

40

rnorm(3, mean = 5, sd = 4) # specify mean and standard deviation

[1] 7.8860598 0.9424674 3.1304865

To sample from a set of values, use sample:

v <- c("a", "b", "c", "d")
sample(v, 2) # without replacement

[1] "c" "d"

sample(v, 6, replace = TRUE) # with replacement

[1] "d" "d" "c" "d" "b" "b"

sample(v) # simply shuffle the elements

[1] "b" "c" "a" "d"

1.13 Writing functions

The R community provides about 7,000 packages. Still, sometimes there isn’t an already made
function capable of doing what you need. In these cases, you can write your own functions. In
fact, it is generally a good idea to always divide your analysis into functions, and then write
a small “master” program that calls the functions and performs the analysis. In this way, the
code will be much more legible, and you will be able to recycle the functions for your other
projects.

A function in R has this form:

my_function_name <- function(optional, arguments, separated, by_commas){
Body of the function
...
#
return(return_value) # this is optional

}

A few examples:

41

sum_two_numbers <- function(a, b){
apb <- a + b
return(apb)

}
sum_two_numbers(5, 7.2)

[1] 12.2

You can set a default value for some of the arguments: if not specified by the user, the function
will use these defaults:

sum_two_numbers <- function(a = 1, b = 2){
apb <- a + b
return(apb)

}
sum_two_numbers()

[1] 3

sum_two_numbers(3)

[1] 5

sum_two_numbers(b = 9)

[1] 10

The return value is optional:

my_factorial <- function(a = 6){
if (as.integer(a) != a) {

print("Please enter an integer!")
} else {

tmp <- 1
for (i in 2:a){
tmp <- tmp * i

}

42

print(paste(a, "! = ", tmp, sep = ""))
}

}
my_factorial()

[1] "6! = 720"

my_factorial(10)

[1] "10! = 3628800"

You can return only one object. If you need to return multiple values, organize them into a
vector/matrix/list and return that.

order_two_numbers <- function(a, b){
if (a > b) return(c(a, b)) #nothing after the first return is executed
return(c(b,a))

}

order_two_numbers(runif(1), runif(1))

[1] 0.9930968 0.5598575

1.14 Organizing and running code

During the class, we will write a lot of code, of increasing complexity. Here is what you should
do to ensure that your programs are well-organized, easy to understand, and easy to debug.

1. Take the problem, and divide it into its basic building blocks. Each block should be its
own function.

2. Write the code for each building block separately, and test it thoroughly.
3. Extensively document the code, so that you can understand what you did, how you did

it, and why.
4. Combine the building blocks into a master program.

43

For example, let’s write code that takes the data on Chromosome 6 we have seen above, and
tries to identify which SNPs deviate the most from Hardy-Weinberg equilibrium. Remember
that in an infinite population, where mating is random, there is no selection and no mutations,
the proportion of people carrying the alleles 𝐴1𝐴1 should be approximately 𝑝11 = 𝑝2 (where
𝑝 is the frequency of the first allele in the population 𝑝 = 𝑝11 + 1

2𝑝12), those carrying 𝐴1𝐴2
should be 𝑝12 = 2𝑝𝑞 (where 𝑞 = 1 − 𝑝) and finally those carrying 𝐴2𝐴2 should be 𝑝22 = 𝑞2.
This is called the Hardy-Weinberg equilibrium.

We want to test this on a number of different SNPs. First, we write a function that takes as
input the data and a given SNP, and computes the probability 𝑝 of carrying the first allele.

compute_probabilities_HW <- function(my_data, my_SNP = "rs1535053"){
Take a SNP and compute the probabilities
p = frequency of first allele
q = frequency of second allele (1 - p)
p11 = proportion homozygous first allele
p12 = proportion heterozygous
p22 = proportion homozygous second allele
my_SNP_data <- my_data[my_data$"SNP" == my_SNP,]
AA <- my_SNP_data$nA1A1
AB <- my_SNP_data$nA1A2
BB <- my_SNP_data$nA2A2
tot_observations <- AA + AB + BB
p11 <- AA / tot_observations
p12 <- AB / tot_observations
p22 <- BB / tot_observations
p <- p11 + p12 / 2
q <- 1 - p
return(list(SNP = my_SNP,

p11 = p11,
p12 = p12,
p22 = p22,
p = p,
q = q,
tot = tot_observations,
AA = AA,
AB = AB,
BB = BB))

}

Now we can test our function:

44

compute_probabilities_HW(ch6)

$SNP
[1] "rs1535053"

$p11
[1] 0.04032258

$p12
[1] 0.3145161

$p22
[1] 0.6451613

$p
[1] 0.1975806

$q
[1] 0.8024194

$tot
[1] 124

$AA
[1] 5

$AB
[1] 39

$BB
[1] 80

If the allele conformed to Hardy-Weinberg, we should find approximately 𝑝2 ⋅ 𝑛 people with
𝐴1𝐴1, where 𝑛 is the number of people sampled. Let’s see whether these assumptions are met
by the data:

observed_vs_expected_HW <- function(SNP_data){
compute expectations under Hardy-Weinberg equilibrium
organize expected and observed in a table
observed <- c("AA" = SNP_data$AA, "AB" = SNP_data$AB, "BB" = SNP_data$BB)
expected <- c("AA" = SNP_data$p^2 * SNP_data$tot,

45

"AB" = 2 * SNP_data$p * SNP_data$q * SNP_data$tot,
"BB" = SNP_data$q^2 * SNP_data$tot)

return(rbind(observed, expected))
}

And test it:

my_SNP_data <- compute_probabilities_HW(ch6)
observed_vs_expected_HW(my_SNP_data)

AA AB BB
observed 5.000000 39.00000 80.00000
expected 4.840726 39.31855 79.84073

Pretty good! This SNP seems very close to the theoretical expectation.

Let’s try another one

observed_vs_expected_HW(compute_probabilities_HW(ch6, "rs1316662"))

AA AB BB
observed 26.00000 62.00000 36.00000
expected 26.20161 61.59677 36.20161

Because we have so many SNPs, we will surely find some that do not comply with the expec-
tation. For example:

my_SNP_data <- compute_probabilities_HW(ch6, "rs6596835")
observed_vs_expected_HW(my_SNP_data)

AA AB BB
observed 17.000000 24.0000 82.0000
expected 6.837398 44.3252 71.8374

To find those with the largest deviations, we can compute for the statistic:

∑
𝑖

(𝑒𝑖 − 𝑜𝑖)2

𝑒𝑖

In genetics, this is called 𝜒2 statistics, because if the data were to follow the assumptions,
these quantities would follow the 𝜒2 distribution.

46

compute_chi_sq_stat <- function(my_obs_vs_expected){
observed <- my_obs_vs_expected["observed",]
expected <- my_obs_vs_expected["expected",]
return(sum((expected - observed)^2 / expected))

}

Now let’s compute the statistic for each SNPs:

because this might take a while, we're going to only analyze the first 1000 SNPs
all_SNPs <- ch6$SNP[1:1000]
results <- data.frame(SNP = all_SNPs, ChiSq = 0)
for (i in 1:nrow(results)){
results[i, 2] <- compute_chi_sq_stat(observed_vs_expected_HW(compute_probabilities_HW(ch6, results[i, 1])))

}

To find the ones with the largest discrepancy, run

results <- results[order(results$ChiSq, decreasing = TRUE),]
head(results)

SNP ChiSq
10 rs2281351 53.993853
221 rs1933650 27.724832
36 rs6596835 25.862675
681 rs689035 9.802277
178 rs6930805 9.491511
179 rs1737539 9.491511

This example showed how a seemingly difficult problem can be decomposed in smaller problems
that are easier to solve.

1.15 Documenting the code using knitr

Let us change our traditional attitude to the construction of programs: Instead of
imagining that our main task is to instruct a computer what to do, let us concentrate
rather on explaining to humans what we want the computer to do.

Donald E. Knuth, Literate Programming, 1984

47

When doing experiments, we typically keep track of everything we do in a laboratory note-
book, so that when writing the manuscript, or responding to queries, we can go back to our
documentation to find exactly what we did, how we did it, and possibly why we did it. The
same should be true for computational work.

RStudio makes it very easy to build a computational laboratory notebook. First, create a new
R Markdown file (choose File -> New File -> R Markdown from the menu).

The gist of it is that you write a text file (.Rmd). The file is then read by an interpreter that
transforms it into an .html or .pdf file, or even into a Word document. You can use special
syntax to render the text in different ways. For example, type

Test **Test2**

Very large header

Large header

Smaller header

Unordered lists

* First
* Second

+ Second 1
+ Second 2

1. This is
2. A numbered list

You can insert `inline code`

The most important feature of R Markdown, however, is that you can include blocks of code,
and they will be interpreted and executed by R. You can therefore combine effectively the code
itself with the description of what you are doing.

For example, including

{{r, eval=FALSE}} print("hello world!")

will become

48

print("hello world!")

[1] "hello world!"

If you don’t want to run the R code, but just display it, use {r, eval = FALSE}; if you want
to show the output but not the code, use {r, echo = FALSE}.

You can include plots, tables, and even render equations using LaTeX. In summary, when
exploring your data or writing the methods of your paper, give R Markdown a try!

You can find inspiration in the notes for this class: all are written in R Markdown.

1.16 Resources

There are very many excellent books and tutorials you can read to become a proficient pro-
grammer in R. For example:

• Intro to R
• Advanced R
• DataCamp
• ComputerWorld
• R Style guide
• R for Data Science
• RStudio Cheat Sheet
• Base R Cheat Sheet
• Advanced R Cheat Sheet
• X in Y minutes
• Intro to Data Wrangling
• R Boot Camp

49

https://cran.r-project.org/doc/manuals/r-release/R-intro.html
http://adv-r.had.co.nz/
https://www.datacamp.com/courses/free-introduction-to-r
https://www.computerworld.com/article/2497143/business-intelligence/business-intelligence-beginner-s-guide-to-r-introduction.html
http://adv-r.had.co.nz/Style.html
https://hackr.io/tutorial/r-for-data-science
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
http://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://www.rstudio.com/wp-content/uploads/2016/02/advancedR.pdf
https://learnxinyminutes.com/docs/r/
https://cengel.github.io/R-data-wrangling/index.html
https://r-bootcamp.netlify.app/

2 Visualizing data using ggplot2

2.1 Goal

Introduce the package ggplot2, which is part of the tidyverse bundle. Learn how to use
ggplot2 to produce publication-quality figures. Discuss the philosophical underpinnings of
the “Grammar of Graphics”, showcase the ggplot2 syntax, produce examples of the different
types of graphs. Learn how to change colors, legends, scales. Visualize histograms, barplots,
scatterplots, etc.

2.2 Introduction to the Grammar of Graphics

The most salient feature of scientific graphs should be clarity. Each figure should make crystal-
clear a) what is being plotted; b) what are the axes; c) what do colors, shapes, and sizes repre-
sent; d) the message the figure wants to convey. Each figure is accompanied by a (sometimes
long) caption, where the details can be explained further, but the main message should be
clear from glancing at the figure (often, figures are the first thing editors and referees look
at).

Many scientific publications contain very poor graphics: labels are missing, scales are unintel-
ligible, there is no explanation of some graphical elements. Moreover, some color graphs are
impossible to understand if printed in black and white, or difficult to discern for color-blind
people.

Given the effort that you put into your science, you want to ensure that it is well presented
and accessible. The investment to master some plotting software will be rewarded by pleasing
graphics that convey a clear message.

In this section, we introduce ggplot2, a plotting package for R This package was developed
by Hadley Wickham who contributed many important packages to R (all included in the
tidyverse bundle we’re going to use for the reminder of the class). Unlike many other plot-
ting systems, ggplot2 is deeply rooted in a “philosophical” vision. The goal is to conceive a
grammar for all graphical representation of data. Leland Wilkinson and collaborators proposed
The Grammar of Graphics. It follows the idea of a well-formed sentence that is composed of
a subject, a predicate, and an object. The Grammar of Graphics likewise aims at describing

50

a well-formed graph by a grammar that captures a very wide range of statistical and scien-
tific graphics. This might be more clear with an example – Take a simple two-dimensional
scatterplot. How can we describe it? We have:

• Data The data we want to plot.

• Mapping What part of the data is associated with a particular visual feature? For
example: Which column is associated with the x-axis? Which with the y-axis? Which
column corresponds to the shape or the color of the points? In ggplot2 lingo, these are
called aesthetic mappings (aes).

• Geometry Do we want to draw points? Lines? In ggplot2 we speak of geometries
(geom).

• Scale Do we want the sizes and shapes of the points to scale according to some value?
Linearly? Logarithmically? Which palette of colors do we want to use?

• Coordinate We need to choose a coordinate system (e.g., Cartesian, polar).

• Faceting Do we want to produce different panels, partitioning the data according to
one (or more) of the variables?

This basic grammar can be extended by adding statistical transformations of the data (e.g.,
regression, smoothing), multiple layers, adjustment of position (e.g., stack bars instead of
plotting them side-by-side), annotations, and so on.

Exactly like in the grammar of a natural language, we can easily change the meaning of a
“sentence” by adding or removing parts. Also, it is very easy to completely change the type of
geometry if we are moving from say a histogram to a boxplot or a violin plot, as these types of
plots are meant to describe one-dimensional distributions. Similarly, we can go from points to
lines, changing one “word” in our code. Finally, the look and feel of the graphs is controlled
by a theming system, separating the content from the presentation.

2.3 Basic ggplot2

ggplot2 ships with a simplified graphing function, called qplot. In this introduction we
are not going to use it, and we concentrate instead on the function ggplot, which gives you
complete control over your plotting. First, we need to load the package:

library(tidyverse)

To explore the features of ggplot2, we are going to use a data set detailing the total number
of COVID cases and deaths in US counties. The data are provided by the New York Times.

51

https://github.com/nytimes/covid-19-data/blob/master/live/us-counties.csv

read the data
original URL https://github.com/nytimes/covid-19-data/raw/master/live/us-counties.csv
dt <- read_csv("https://rb.gy/zr65gg")

Rows: 3257 Columns: 6
-- Column specification --
Delimiter: ","
chr (3): county, state, fips
dbl (2): cases, deaths
date (1): date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(dt)

A tibble: 6 x 6
date county state fips cases deaths
<date> <chr> <chr> <chr> <dbl> <dbl>

1 2023-03-24 McPherson South Dakota 46089 534 16
2 2023-03-24 Meade South Dakota 46093 8404 68
3 2023-03-24 Mellette South Dakota 46095 654 8
4 2023-03-24 Miner South Dakota 46097 542 15
5 2023-03-24 Jennings Indiana 18079 8178 119
6 2023-03-24 Johnson Indiana 18081 51093 664

we are going to work with date, county, state, cases and deaths.

Let’s select Illnois, and take only the counties with more than 10k cases (to have a less crowded
graph):

dti <- dt[(dt$state == "Illinois") & (dt$cases > 10^4),]

A particularity of ggplot2 is that it accepts exclusively data organized in tables (a data.frame
or a tibble object—more on tibbles later). Thus, all of your data needs to be converted into
a data frame format for plotting.

52

2.4 Building a well-formed graph

For our first plot, we’re going to produce a barplot detailing how many cases have been reported
in each County:

ggplot(data = dti)

As you can see, nothing is drawn: we need to specify what we would like to associate to the x
axis, and what to the y axis, etc. (i.e., we want to set as the aesthetic mappings). A barplot
typically has classes on the x axis, while the y axis reports the counts in each class.

ggplot(data = dti) + aes(x = county, y = cases)

53

0

500000

1000000

1500000

AdamsBooneBureauChampaignChristianClintonColesCookDeKalbDuPageEffinghamFranklinFultonGrundyHenryJacksonJeffersonKaneKankakeeKendallKnoxLakeLaSalleLeeLivingstonLoganMaconMacoupinMadisonMarionMcHenryMcLeanMonroeMontgomeryMorganOglePeoriaRandolphRock IslandSalineSangamonSt. ClairStephensonTazewellVermilionWhitesideWillWilliamsonWinnebagoWoodford
county

ca
se

s

Note that we concatenate pieces of our “sentence” using the + sign! We’ve got the aestethic
mappings figured out, but still no graph… we need to specify a geometry, i.e., the type of graph
we want to produce. In this case, a barplot where the height of the bars is specified by the y
value:

ggplot(data = dti) + aes(x = county, y = cases) + geom_col()

54

0

500000

1000000

1500000

AdamsBooneBureauChampaignChristianClintonColesCookDeKalbDuPageEffinghamFranklinFultonGrundyHenryJacksonJeffersonKaneKankakeeKendallKnoxLakeLaSalleLeeLivingstonLoganMaconMacoupinMadisonMarionMcHenryMcLeanMonroeMontgomeryMorganOglePeoriaRandolphRock IslandSalineSangamonSt. ClairStephensonTazewellVermilionWhitesideWillWilliamsonWinnebagoWoodford
county

ca
se

s

Because it is very difficult to see the labels, let’s swap the axes:

ggplot(data = dti) +
aes(x = county, y = cases) +
geom_col() +
coord_flip()

55

AdamsBooneBureauChampaignChristianClintonColesCookDeKalbDuPageEffinghamFranklinFultonGrundyHenryJacksonJeffersonKaneKankakeeKendallKnoxLakeLaSalleLeeLivingstonLoganMaconMacoupinMadisonMarionMcHenryMcLeanMonroeMontgomeryMorganOglePeoriaRandolphRock IslandSalineSangamonSt. ClairStephensonTazewellVermilionWhitesideWillWilliamsonWinnebagoWoodford

0 500000 1000000 1500000
cases

co
un

ty

The graph shows that, naturally, the vast majority of cases was reported in Cook county. We
have written a “well-formed sentence”, composed of data + mapping + geometry, and this
is sufficient to produce a graph. We can add “adjectives” and “adverbs” to our graph, to make
it clearer:

ggplot(data = dti) +
aes(x = reorder(county, cases), y = cases) + # order labels according to cases
geom_col() +
ylab("Number of COVID cases reported") + # x label
xlab("Illinois County") + # y label
scale_y_log10() + # transform the counts to logs
coord_flip()+
ggtitle(dti$date[1]) # main title (use current date)

56

BureauSalineMonroeLeeMontgomeryMorganWoodfordLoganFultonEffinghamRandolphChristianLivingstonJeffersonClintonMarionStephensonFranklinHenryMacoupinKnoxGrundyOgleBooneColesWhitesideJacksonAdamsWilliamsonDeKalbVermilionKankakeeLaSalleMaconKendallRock IslandTazewellPeoriaMcLeanSangamonChampaignMadisonSt. ClairMcHenryWinnebagoKaneLakeWillDuPageCook

1e+01 1e+03 1e+05
Number of COVID cases reported

Ill
in

oi
s

C
ou

nt
y

2023−03−24

2.5 Scatterplots

Using ggplot2, one can produce very many types of graphs. The package works very well for
2D graphs (or 3D rendered in two dimensions), while it lack capabilities to draw proper 3D
graphs, or networks.

The main feature of ggplot2 is that you can tinker with your graph fairly easily, and with a
common grammar. You don’t have to settle on a certain presentation of the data until you’re
ready, and it is very easy to switch from one type of graph to another.

For example, let’s plot the number of cases vs. number of deaths:

you can store the graph in a variable
pl <- ggplot(data = dti)
pl <- pl + aes(x = cases, y = deaths) # for a scatter plot, we need two aes mappings!
pl <- pl + geom_point() # draw points in a scatterplot
pl <- pl + scale_x_sqrt() + scale_y_sqrt() # transform axes
pl # or show(pl)

57

5000

10000

15000

400000 800000 1200000 1600000
cases

de
at

hs

Showing that number of daily cases and number of daily deaths are highly correlated (but it
would be a stronger correlation if we were to plot past cases vs. current deaths).

2.6 Histograms, density and boxplots

It would be nice to see the distribution of the ratio deaths/cases. To do so, we can produce a
histogram:

pl <- ggplot(data = dti)
pl <- pl + aes(x = deaths / cases)
pl + geom_histogram(binwidth = 0.0025)

58

0

5

10

15

20

0.005 0.010 0.015
deaths/cases

co
un

t

We can control the width of the bins by specifying:

pl + geom_histogram(bins = 30) # specify the number of bins

0

1

2

3

4

5

0.005 0.010 0.015
deaths/cases

co
un

t

59

pl + geom_histogram(binwidth = 0.001) # specify the bin width

0.0

2.5

5.0

7.5

10.0

0.005 0.010 0.015
deaths/cases

co
un

t

Let’s see whether the histograms differ between Illinois and Indiana:

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = deaths / cases, fill = state) + # fill the bar colors by state
geom_histogram(bins = 30)

60

0

50

100

150

200

0 50 100 150
deaths/cases

co
un

t state

Illinois

Indiana

To plot the histogram side by side, use

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = deaths / cases, fill = state) + # fill the bar colors by state
geom_histogram(position = "dodge", bins = 30)+
xlim(c(0,0.03))

61

0

5

10

15

0.00 0.01 0.02 0.03
deaths/cases

co
un

t state

Illinois

Indiana

Similarly, we can approximate the histogram using a density plot, which interpolates the bin
height to create a smooth distribution:

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = deaths / cases, fill = state) + # fill by state
geom_density() + xlim(c(0,0.03))

62

0

50

100

0.00 0.01 0.02 0.03
deaths/cases

de
ns

ity

state

Illinois

Indiana

To see the graph better, let’s make the coloring semi-transparent:

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = deaths / cases, fill = state) + # fill by state
geom_density(alpha = 0.5) + xlim(c(0, 0.03))

63

0

50

100

0.00 0.01 0.02 0.03
deaths/cases

de
ns

ity

state

Illinois

Indiana

Showing a similar distribution for the death rate in the two states. For this type of comparison,
the ideal graph to show is maybe a box-plot or a violin plot:

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = state, y = deaths / cases, fill = state) + # we need both x and y
geom_boxplot() + ylim(c(0, 0.03))

64

0.00

0.01

0.02

0.03

Illinois Indiana
state

de
at

hs
/c

as
es state

Illinois

Indiana

A boxplot shows the median (horizontal bar) as well as the inter-quartile range (box size goes
from 25th to 75th percentile), as well as the typical range of the data (whiskers). The dots
represent “outliers”. To show the full distribution, you can use a violin plot:

ggplot(data = dt[dt$state %in% c("Illinois", "Indiana"),]) +
aes(x = state, y = deaths / cases, fill = state) + # we need both x and y
geom_violin(draw_quantiles = 0.5) + ylim(c(0, 0.03))

65

0.00

0.01

0.02

0.03

Illinois Indiana
state

de
at

hs
/c

as
es state

Illinois

Indiana

Note that when we’re producing “similar” plots (e.g., histogram vs. density, box vs. violin, or
any other plot sharing the same aesthetic mappings) changing a single word, we have changed
the structure of the graph considerably!

2.7 Scales

We can use scales to determine how the aesthetic mappings are displayed. For example, we
could set the x axis to be in logarithmic scale, or we can choose how the colors, shapes and sizes
are used. ggplot2 uses two types of scales: continuous scales are used for continuos variables
(e.g., real numbers); discrete scales for variables that can only take a certain number of
values (e.g., colors, shapes, sizes).

For example, let’s plot deaths vs. cases in our dti data set:

pl <- ggplot(data = dti) +
aes(x = cases, y = deaths, colour = log(deaths)) +

geom_point()
pl

66

0

5000

10000

15000

0 500000 1000000 1500000
cases

de
at

hs

5

6

7

8

9

log(deaths)

We can change the scale of the x axis by calling:

pl + scale_x_log10() + scale_y_log10() # log-log plot

100

1000

10000

1e+04 1e+05 1e+06
cases

de
at

hs

5

6

7

8

9

log(deaths)

67

pl + scale_x_sqrt() # sqrt of number of cases

0

5000

10000

15000

400000 800000 12000001600000
cases

de
at

hs

5

6

7

8

9

log(deaths)

pl + scale_x_reverse() # from large to small

0

5000

10000

15000

050000010000001500000
cases

de
at

hs

5

6

7

8

9

log(deaths)

68

Similarly, we can change the use of colors, points, etc.

2.8 List of aesthetic mappings

We’ve seen some of the aesthetic mappings. Here’s a list of the main aes:

• x what to use for x axis
• y what to use for y axis
• color the color of points and lines
• fill the color of shapes (e.g., boxes, bars, etc.)
• size the size of points, lines, etc.
• shape the shape of points
• alpha the level of transparency of the object
• linetype the type of line (e.g., solid, dashed, etc.)

a more complex example
ggplot(data = dt) +
aes(x = cases, y = deaths,

color = state) +
geom_point() +
scale_x_log10() + # note that the points with 0 cases or deaths will not work
scale_y_log10() +
theme(legend.position = "bottom")

69

110100100010000
1e+01 1e+03 1e+05

cases

de
at

hs

state

Alabama

Alaska

American Samoa

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

District of Columbia

Florida

Georgia

Guam

Hawaii

Idaho

Illinois

Indiana

Iowa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Northern Mariana Islands

Ohio

Oklahoma

Oregon

Pennsylvania

Puerto Rico

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virgin Islands

Virginia

Washington

West Virginia

Wisconsin

Wyoming

2.9 List of geometries

There are very many geometries; here are a few of the most useful ones:

• Lines: geom_abline (line given slope and intercept); geom_hline, geom_vline (horizon-
tal, vertical line); geom_line (connect observation in scatterplot).

• Bars: geom_bar (bar height is the count/sum); geom_col (bar heigts are provided by
the data).

• Boxes: geom_boxplot.
• Distributions: geom_violin (like boxplots, but showing the density of the distribution);

geom_density (density of 1D distribution), geom_density2d (density of bivariate distri-
bution); geom_histogram, geom_bin2d (histograms).

• Text: geom_text.
• Smoothing function: geom_smooth (interpolates the points of a scatterplot).
• Error bars: geom_errorbar.
• Maps: geom_map (polygons from a reference map).

2.10 List of scales

There are also very many scales. Here are a few:

70

• xlab, ylab, xlim, ylim control labels and ranges of the axes.
• scale_alpha transparency of the points/shapes.
• scale_color (many options) colors of points and lines.
• scale_fill (many options) colors of boxes, bars and shapes.
• scale_shape shape of the points.
• scale_linetype type of lines.
• scale_size size of points and lines.
• scale_x, scale_y (many options) transformations of the axes.

2.11 Themes

Themes allow you to manipulate the look and feel of a graph with just one command. The
package ggthemes extends the themes collection of ggplot2 considerably. For example:

to install, type install.packages("ggthemes") in the console
library(ggthemes)
pl <- ggplot(data = dti) + aes(x = cases, y = deaths) +

geom_point() + scale_x_log10() + scale_y_log10()
pl + theme_bw() # white background
pl + theme_economist() # like in the magazine "The Economist"
pl + theme_wsj() # like "The Wall Street Journal"

2.12 Faceting

In many cases, we would like to produce a multi-panel graph, in which each panel shows the
data for a certain combination of parameters. In ggplot2 this is called faceting: the command
facet_grid is used when you want to produce a grid of panels, in which all the panels in the
same row (or column) have axes-ranges in common; facet_wrap is used when the different
panels do not necessarily have axes-ranges in common.

For example:

pl <- ggplot(data = dt[dt$state %in% c("Illinois", "Missouri", "Wisconsin", "Indiana"),]) +
aes(x = cases, y = deaths, colour = state) + geom_point() + scale_x_log10() + scale_y_log10()

pl <- pl + facet_wrap(~state)
pl

71

Missouri Wisconsin

Illinois Indiana

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

10

100

1000

10000

10

100

1000

10000

cases

de
at

hs

state

Illinois

Indiana

Missouri

Wisconsin

Let’s add a line separating showing the best-fit line:

pl <- pl + geom_smooth()
pl

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

72

Missouri Wisconsin

Illinois Indiana

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

10

100

1000

10000

10

100

1000

10000

cases

de
at

hs

state

Illinois

Indiana

Missouri

Wisconsin

Make ranges on x and y axes equal, and add the 1:1 line:

pl <- pl + coord_equal() + geom_abline(slope = 1, intercept = 0)
pl

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Missouri Wisconsin

Illinois Indiana

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

10

100

1000

10000

10

100

1000

10000

cases

de
at

hs

state

Illinois

Indiana

Missouri

Wisconsin

73

2.13 Setting features

Often, you want to simply set a feature (e.g., the color of the points, or their shape), rather
than using it to display information (i.e., mapping some aestethic). In such cases, simply
declare the feature outside the aes:

pl <- ggplot(data = dt) +
aes(x = cases, y = deaths) +
scale_x_log10() +
scale_y_log10()

pl + geom_point()

1

10

100

1000

10000

1e+01 1e+03 1e+05
cases

de
at

hs

pl + geom_point(colour = "red")

74

1

10

100

1000

10000

1e+01 1e+03 1e+05
cases

de
at

hs

pl + geom_point(shape = 3)

1

10

100

1000

10000

1e+01 1e+03 1e+05
cases

de
at

hs

pl + geom_point(alpha = 0.5)

75

1

10

100

1000

10000

1e+01 1e+03 1e+05
cases

de
at

hs

2.14 Saving graphs

You can either save graphs as done normally in R:

save to pdf format
pdf("my_output.pdf", width = 6, height = 4)
print(my_plot)
dev.off()
save to svg format
svg("my_output.svg", width = 6, height = 4)
print(my_plot)
dev.off()

or use the function ggsave

save current graph
ggsave("my_output.pdf")
save a graph stored in ggplot object
ggsave(plot = my_plot, filename = "my_output.svg")

76

2.15 Multiple layers

You can overlay different plots. To do so, however, they must share some of the aesthetic
mappings. The simplest case is that in which you have only one dataset:

ggplot(data = dt) +
geom_point(aes(y = state, x = cases), color = "black") +
geom_point(aes(y = state, x = deaths), color = "red") +
scale_x_log10() +
xlab("cases (black), deaths (red)")

AlabamaAlaskaAmerican SamoaArizonaArkansasCaliforniaColoradoConnecticutDelawareDistrict of ColumbiaFloridaGeorgiaGuamHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMississippiMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaNorthern Mariana IslandsOhioOklahomaOregonPennsylvaniaPuerto RicoRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirgin IslandsVirginiaWashingtonWest VirginiaWisconsinWyoming

1e+01 1e+03 1e+05
cases (black), deaths (red)

st
at

e

2.16 Try on your own data!

Now that you’re familiar with ggplot2, try producing some meaningful plots for your own
data.

2.17 Resources

• R for Data Science
• Tidyverse reference website

77

https://hackr.io/tutorial/r-for-data-science
https://www.tidyverse.org/

• Data Visualization Cheat Sheet

78

https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf

3 Fundamentals of probability

3.1 Sample spaces and random variables

No observation or measurement in our world is perfectly reproducible, no matter how carefully
planned and executed. The level of uncertainly varies, but randomness always finds a way to
creep into a data set. Where does the “random” factor come from? From the classical physics
perspective, as articulated by Laplace, most natural phenomena are theoretically deterministic
for an omniscient being with an unlimited computational power. Quantum mechanical phe-
nomena are (theoretically) truly random, but the randomness is not observable on the scales
of biology or social science. The lack of predictability in the data we work with is usually due
either to its intrinsic complexity (e.g., bio-molecular systems, prediction of animal behavior),
which essentially makes it impossible to know every detail of the system, or to some external
source of noise (e.g., measurement error, weather affecting food availability) that is outside of
our control.

In probability terminology, a random experiment produces outcomes and the collection of all
outcomes of an experiment is called its sample space.

Example: The specifics of the experiment can affect the degree of uncertainty in the outcome;
the same measurement may be random or not, depending on context. For example, measuring
the height of a person should be deterministic, if one measures the height of the same person
within a short amount of time. So unless you’re interested in studying the error in stadiometer
results, you probably won’t consider this a random experiment. However, measuring the
heights of different people is a random experiment, where the source of randomness is primarily
due to the selection of people for your study, called sampling error, rather than due to the
measurement noise of any one person.

The measurement of interest from a random experiment is called a random variable. Sometimes
the measurement is simply the outcome, but usually it reports some aspect of the outcome and
so several outcomes can have the same value of the random variable. The random variable can
then be seen as condensing the sample space into a smaller range of values. Random variables
can be numeric or categorical, with the difference that categorical variables cannot be assigned
meaningful numbers. For instance, one may report an individual by phenotype (e.g., white or
purple flowers), or having a nucleotide A, T, G, C in a particular position, and although one
could assign numbers to these categories (e.g., 1, 2, 3, 4) they could not be used in a sensible
way—one can compare and do arithmetic with numbers, but A is not less than T and A + T

79

https://www.quickmedical.com/measure/stadiometer.html

does not equal G. Thus there are different tools for describing and working with numeric and
categorical random variables.

Example: In a DNA sequence a codon triplet represents a specific amino acid, but there is
redundancy (several triplets may code for the same amino acid). One may think of a coding
DNA sequence as an outcome, but the amino acid (sequence or single one) as a random variable.
Extending this framework, one may think of genotype as an outcome, but a phenotype (e.g., eye
color) as a random variable—although this is not correct for any phenotype that is not strictly
determined by the genotype, because then there are other factors (e.g., environmental or
epigenetic) that influence the value of the random variable besides the outcome (genotype).

Exercise: The package palmerpenguins contains multiple variables measured in populations
of three different species of penguins over three years on three different islands. Identify
numeric and categorical variables, and specify whether numeric variables are discrete and
continuous.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(palmerpenguins)
str(penguins)

tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

80

3.2 Probability axioms

An outcome in sample space can be assigned a probability depending on its frequency of
occurrence out of many trials, each is a number between 0 and 1. Combinations of outcomes
(events) can be assigned probabilities by building them out of individual outcomes. These
probabilities have a few rules, called the axioms of probability, expressed using set theory
notation.

1. The total probability of all outcomes in sample space is 1. 𝑃(Ω) = 1
2. The probability of nothing (empty set) is 0. 𝑃(∅) = 0
3. The probability of an event made up of the union of two events is the sum of the two

probabilities minus the probability of the overlap (intersection.) 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) +
𝑃(𝐵) − 𝑃 (𝐴 ∩ 𝐵)

Example: Let’s assign a probability to every possible three-letter codon. There are 43 = 64
codons, so if one assumes that each one has equal probability, then they they all equal 1/64
(by axiom 1.) The probability of a codon having A as the first letter is 1/4, and so is the
probability of A as the second letter. Axiom 3 allows us to calculate the probability of A in
either the first or the second letter:

𝑃(𝐴𝑋𝑋 ∪ 𝑋𝐴𝑋) = 𝑃(𝐴𝑋𝑋) + 𝑃(𝑋𝐴𝑋) − 𝑃(𝐴𝐴𝑋) = 1/4 + 1/4 − 1/16 = 7/16

3.3 Probability distributions

The probability of each value of a random variable can be calculated from the probability of the
event that corresponds to each value of the random variable. The collection of the probabilities
of all of the values of the random variable is called the probability distribution function of the
random variable, more formally the mass function for a discrete random variable or the density
function for a continuous random variable.

For a discrete random variable (let’s call it 𝑋) with a probability mass function 𝑓 , the prob-
ability of 𝑋 taking the value of 𝑎 can be written either as 𝑓(𝑋 = 𝑎) or 𝑓(𝑎), as long as it’s
clear that 𝑓 is the probability distribution function of 𝑋. The one ironclad rule of probability
is that all values of the mass function have to add up to 1. To state this mathematically, if all
the possible values of 𝑋 can be written as 𝑎1, 𝑎2, ... (there may be finitely or infinitely many
of them, as long as it’s a countable infinity), this sum has to be equal to 1:

∑
𝑖

𝑓(𝑎𝑖) = 1

81

A continuous random variable (let’s call it 𝑌) with a probability density function 𝑔 is a bit
more complicated. The continuous part means that the random variable has uncountably
many values, even if the range is finite (for example, there are uncountably many real numbers
between 0 and 1). Thus, the probability of any single value must be vanishingly small (zero),
otherwise it would be impossible to add up (integrate) all of the values and get a finite result
(let alone 1). We can only measure the probability of a range of values of 𝑌 and it is defined
by the integral of the density function overall that range:

𝑃(𝑎 < 𝑌 < 𝑏) = ∫
𝑏

𝑎
𝑔(𝑦)𝑑𝑦

The total probability over the entire range of 𝑌 has to be 1, but it’s similarly calculated by
integration instead of summation (𝑅 represents the range of values of 𝑌):

∫
𝑅

𝑔(𝑦)𝑑𝑦 = 1

Example: As codons (DNA triplets) code for amino acids, we can consider the genetic code
a random variable on the sample space. Assuming all codons have equal probabilities, the
probability of each amino acid is the number of triplets that code for it divided by 64. For
example, the probabilities of leucine and arginine are 6/64 = 3/32, the probability of threonine
is 4/64 = 1/16 and the probabilities of methionine and tryptophan are 1/64. This defines a
probability distribution function of the random variable of the genetic code. Note that the
sum of all the probabilities of amino acids has to be 1. Of course there is no inherent reason
why each triplet should be equally probable, so a different probability structure on the sample
space would result in a different probability distribution (mass) function.

3.4 Measures of center: medians and means

The standard measures described here are applicable only numeric random variables. Some
measures of center and spread for categorical variables exist as well.

The median of a random variable is the value which is in the middle of the distribution,
specifically, that the probability of the random variable being no greater than that value is
0.5.

The mean or expectation of a random variable is the center of mass of the probability distri-
bution. Specifically, it is defined for a mass function to be:

𝐸(𝑋) = ∑
𝑖

𝑎𝑖 𝑓(𝑎𝑖)

82

And for a density function it is defined using the integral:

𝐸(𝑌) = ∫
𝑅

𝑦 𝑔(𝑦)𝑑𝑦

Example: Let us examine the factors (categorical variables) in the penguins data set. They
cannot be described using means and medians, but can be plotted by counts in each category
as you learned in the introduction to ggplot2:

ggplot(data = penguins) +
aes(x = species, fill = sex) +
geom_bar(position = "fill")

0.00

0.25

0.50

0.75

1.00

Adelie Chinstrap Gentoo
species

co
un

t

sex

female

male

NA

ggplot(data = penguins) +
aes(x = year, fill = species) +
geom_bar(position = "fill")

83

0.00

0.25

0.50

0.75

1.00

2007 2008 2009
year

co
un

t

species

Adelie

Chinstrap

Gentoo

One can plot the distributions of numeric variables like body mass for different penguin species
using box plots:

ggplot(data = penguins) + aes(x = as.factor(species), y=body_mass_g) + geom_boxplot()

Warning: Removed 2 rows containing non-finite values (`stat_boxplot()`).

84

3000

4000

5000

6000

Adelie Chinstrap Gentoo
as.factor(species)

bo
dy

_m
as

s_
g

The following code chunk uses dplyr functions that we will learn in the next chapter to
calculate the mean and median values of these variables aggregated by species:

penguins %>% drop_na() %>% group_by(species) %>% summarise(mean = mean(body_mass_g))

A tibble: 3 x 2
species mean
<fct> <dbl>

1 Adelie 3706.
2 Chinstrap 3733.
3 Gentoo 5092.

penguins %>% drop_na() %>% group_by(species) %>% summarise(median = median(body_mass_g))

A tibble: 3 x 2
species median
<fct> <dbl>

1 Adelie 3700
2 Chinstrap 3700
3 Gentoo 5050

Comment on how the descriptive statistics correspond to the box plots.

85

3.5 Measures of spread: quartiles and variances

All random variables have spread in their values. The simplest way to describe it is by stating
its range (the interval between the minimum and maximum values) and the quartiles (the
medians of the two halves of the distribution).

A more standard measure of the spread of a distribution is the variance, defined as the expected
value of the squared differences from the mean:

Var(𝑋) = 𝐸[𝑋 − 𝐸(𝑋)]2 = ∑
𝑖

(𝑎𝑖 − 𝐸(𝑋))2𝑓(𝑎𝑖)

And for a density function it is defined using the integral:

Var(𝑌) = 𝐸[𝑌 − 𝐸(𝑌)]2 = ∫
𝑅

(𝑦 − 𝐸(𝑌))2𝑔(𝑦)𝑑𝑦

Variances have squared units so they are not directly comparable to the values of the random
variable. Taking the square root of the variance converts it into the same units and is called
the standard deviation of the distribution:

𝜎𝑋 = √Var(𝑋)

Example: Let’s go back to the penguins data set and calculate the measures of spread for
the variable body mass for different penguin species

ggplot(data = penguins) + aes(x = as.factor(species), y=body_mass_g) + geom_boxplot()

Warning: Removed 2 rows containing non-finite values (`stat_boxplot()`).

86

3000

4000

5000

6000

Adelie Chinstrap Gentoo
as.factor(species)

bo
dy

_m
as

s_
g

penguins %>% drop_na() %>% group_by(species) %>% summarise(var = var(body_mass_g))

A tibble: 3 x 2
species var
<fct> <dbl>

1 Adelie 210332.
2 Chinstrap 147713.
3 Gentoo 251478.

penguins %>% drop_na() %>% group_by(species) %>% summarise(first_quart = quantile(body_mass_g,0.25))

A tibble: 3 x 2
species first_quart
<fct> <dbl>

1 Adelie 3362.
2 Chinstrap 3488.
3 Gentoo 4700

penguins %>% drop_na() %>% group_by(species) %>% summarise(third_quart = quantile(body_mass_g,0.75))

87

A tibble: 3 x 2
species third_quart
<fct> <dbl>

1 Adelie 4000
2 Chinstrap 3950
3 Gentoo 5500

Which species has a wider spread in its body mass? How do the descriptive stats and the box
plots correspond?

3.6 Data as samples from distributions: statistics

In scientific practice, we collect data from one or more random variables, called a sample, and
then try to make sense of it. One of the basic goals is statistical inference: using the data set
to describe the population distribution from which the sample was drawn. Data sets can be
plotted as histograms and the frequency/fraction of each value should be an approximation of
the underlying probability distribution. In addition, descriptive statistics of the sample data
(means, variances, medians, etc.) can be used to estimate the true parameters such as the
mean and the variance of the population distribution.

Some of the fundamental questions about the population include:

1. What type of distribution is it?

2. Estimate the parameters of that distribution.

3. Test a hypothesis, e.g., whether two samples were drawn from the same distribution.

4. Describe and test a relationship between two or more variables.

3.6.1 Law of large numbers

First, the sample has to be unbiased, that is, no outcomes should be systematically over-
or under-represented. But even an unbiased sample will differ from the population due to
the inherent randomness of selection (sampling error). The law of large numbers states
that as the sample size increases, the mean of the sample converges to the true mean of the
population. Formally, for a set of 𝑛 independent, identically distributed random variables (the
sample) {𝑋𝑖} the sample mean 𝑋𝑛 converges to the mean of the distribution 𝜇:

lim
𝑛→∞

∑𝑛
𝑖=1 𝑋𝑖
𝑛 = lim

𝑛→∞
𝑋𝑛 = 𝜇

88

3.6.2 Central Limit Theorem

That is nice to know, but doesn’t say exactly how large a sample is needed to estimate, for
example, the mean of the population to a given precision. For that, we have the Central
Limit Theorem, which states that the distribution of sample means (from samples of inde-
pendent, identically distributed random variables) as sample size increases, approaches the
normal (Gaussian) distribution with mean equal to the population mean and standard de-
viation equal to the standard deviation of the population divided by the square root of the
sample size. Formally, it states that for a set of 𝑛 independent, identically distributed random
variables (the sample) {𝑋𝑖} with distribution mean 𝜇 and variance 𝜎2, the probability density
function of the sample mean 𝑋𝑛 converges for large sample size 𝑛 to the normal distribution:

𝑃(𝑋𝑛) → 𝑁(𝜇, 𝜎2/𝑛)

where 𝑁(𝜇, 𝜎2/𝑛) stands for the normal distribution with mean 𝜇 and variance 𝜎2/𝑛. One
extremely useful consequence of this theorem is that the variance of the sample mean is re-
ciprocally related to the sample size 𝑛. More precisely, it allows the calculation of confidence
intervals by using the normal distribution to generate an interval around the observed sample
mean in which the true mean 𝜇 lies with a given likelihood.

This is an amazing result because it applies to any distribution, so it allows for the estimation
of means for any situation, as long as the condition of independent, identically distributed
variables in the sample is satisfied (the identical distributed condition can actually be relaxed).
There are other central limit theorems that apply to other situations, including cases where
the random variables in the sample are not independent (e.g., Markov models). The bottom
line is that an unbiased sample contains a reflection of the true population, but it is always
distorted by uncertainty. Larger sample sizes decrease the uncertainty but are more difficult
and expensive to obtain.

Discussion: Suggest examples of biological data sets which are not made up of independent
identically distributed random variables.

3.7 Exploration: misleading means

Means are the most common type of descriptive statistic and are sometimes the only numeric
quantity used to compare two data sets, e.g. “the average GPA at school A is 3.5 vs 3.8 at
school B”. However, means can be misleading measures in multiple ways.

First, means are highly sensitive to outliers, or points that are very different from other values.
They can skew the mean value, even pulling it completely away from the bulk of the values,
in which case the mean ceases to be a measure of a “typical” value.

89

Second, there can be funny business with combining means of different subsets of data. Nor-
mally, you might expect if you have group A and group B, and each group has two subgroups
divided by another variable (e.g. we are comparing the GPAs of students in school A and
school B, and we split up the students in each school by gender), then if the means of each
subgroup of A and larger than the means of the same subgroup of B (e.g. the GPA of girls
and boys in school A are higher than those of their counterparts in school B), then the same
relationship should be true for the combined mean of group A and group B (that is, the overall
GPA in school A is higher than school B). That is not necessarily true!

This apparent contradiction is called Simpson’s paradox. It can be illustrated in the data set
of all the passengers and crew on the doomed ocean liner Titanic. The data set is found in
the library stablelearner and is loaded by the chunk below:

library(stablelearner)
data(titanic)
str(titanic)

'data.frame': 2207 obs. of 11 variables:
$ name : chr "Abbing, Mr. Anthony" "Abbott, Mr. Eugene Joseph" "Abbott, Mr. Rossmore Edward" "Abbott, Mrs. Rhoda Mary 'Rosa'" ...
$ gender : Factor w/ 2 levels "female","male": 2 2 2 1 1 2 2 1 2 2 ...
$ age : num 42 13 16 39 16 25 30 28 27 20 ...
$ class : Factor w/ 7 levels "1st","2nd","3rd",..: 3 3 3 3 3 3 2 2 3 3 ...
$ embarked: Factor w/ 4 levels "B","C","Q","S": 4 4 4 4 4 4 2 2 2 4 ...
$ country : Factor w/ 48 levels "Argentina","Australia",..: 44 44 44 15 30 44 17 17 26 16 ...
$ ticketno: int 5547 2673 2673 2673 348125 348122 3381 3381 2699 3101284 ...
$ fare : num 7.11 20.05 20.05 20.05 7.13 ...
$ sibsp : Ord.factor w/ 9 levels "0"<"1"<"2"<"3"<..: 1 1 2 2 1 1 2 2 1 1 ...
$ parch : Ord.factor w/ 10 levels "0"<"1"<"2"<"3"<..: 1 3 2 2 1 1 1 1 1 1 ...
$ survived: Factor w/ 2 levels "no","yes": 1 1 1 2 2 2 1 2 2 2 ...

The chunk below calculated the survival probability of passengers of all classes compared to
the crew (of all types:

titanic %>% group_by(Passenger = class %in% c('1st', '2nd', '3rd'), survived) %>% summarise(num = n()) %>% mutate(fraction = num/sum(num))

`summarise()` has grouped output by 'Passenger'. You can override using the
`.groups` argument.

A tibble: 4 x 4
Groups: Passenger [2]
Passenger survived num fraction

90

<lgl> <fct> <int> <dbl>
1 FALSE no 679 0.763
2 FALSE yes 211 0.237
3 TRUE no 817 0.620
4 TRUE yes 500 0.380

You can see that about 24% of the crew survived and almost 38% of the passengers survived.
In this week’s assignment you will calculate and explain what happens when you divide the
people in each group by gender.

3.8 References

• Laplace’s views on probability and determinism
• Central Limit Theorem in R
• Exploration of the Central Limit Theorem
• Simpson’s paradox

91

https://www.bayesianspectacles.org/laplaces-demon/
https://medium.com/@ODSC/exploring-the-central-limit-theorem-in-r-e2a2f7091606
https://genomicsclass.github.io/book/pages/clt_in_practice.html
https://medium.com/@nikhilborkar/the-simpsons-paradox-and-where-to-find-them-cfcec6c2d8b3

4 Data wrangling

4.1 Goal

Learn how to manipulate large data sets by writing efficient, consistent, and compact code.
Introduce the use of dplyr, tidyr, and the “pipe” operator %>%. Effortlessly produce statistics
for grouped data. Massage data into “tidy” form.

4.2 What is data wrangling?

As biologists living in the XXI century, we are often faced with tons of data, possibly replicated
over several organisms, treatments, or locations. We would like to streamline and automate
our analysis as much as possible, writing scripts that are easy to read, fast to run, and easy to
debug. Base R can get the job done, but often the code contains complicated operations, and
a lot of $ signs and brackets.

We’re going to learn about the packages dplyr and tidyr, which are part of tidyverse and
can be used to manipulate large data frames in a simple and straightforward way. These tools
are also much faster than the corresponding base R commands, are very compact, and can be
concatenated into “pipelines”.

To start, we need to import the libraries:

library(tidyverse) # this loads both dplyr and tidyr, along with other packages
library(palmerpenguins) # a nice data set to play with

make sure function select is the right one...
select <- dplyr::select

We are going to use the data set penguins from the package palmerpenguins, which we have
already seen last week.

92

4.3 A new data type, tibble

The data is stored in a “tibble”:

class(penguins)

[1] "tbl_df" "tbl" "data.frame"

In fact, dplyr ships with a new data type, called a tibble. To convert a data.frame into a
tibble, use as_tibble:

load a data frame
data("trees")
class(trees)
trees <- as_tibble(trees)
class(trees)

The nice feature of tbl objects is that they will print only what fits on the screen, and
also give you useful information on the size of the data, as well as the type of data in each
column. Other than that, a tbl object behaves very much like a data.frame. In some rare
cases, you want to transform the tbl back into a data.frame. For this, use the function
as.data.frame(tbl_object).

We can take a look at the data using one of several functions:

• head(dt) shows the first few rows
• tail(dt) shows the last few rows
• glimpse(dt) a summary of the data (similar to str in base R)
• View(dt) open in spreadsheet-like window

4.4 Selecting rows and columns

There are many ways to subset the data, either by row (subsetting the observations), or by
column (subsetting the variables). For example, let’s select only the rows with observations
from the island Torgersen:

filter(penguins, island == "Torgersen")

93

A tibble: 52 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
7 Adelie Torgersen 38.9 17.8 181 3625
8 Adelie Torgersen 39.2 19.6 195 4675
9 Adelie Torgersen 34.1 18.1 193 3475
10 Adelie Torgersen 42 20.2 190 4250
i 42 more rows
i 2 more variables: sex <fct>, year <int>

We have 52 observations. We have used the command filter(tbl, conditions) to select
certain observations. We can combine several conditions, by listing them side by side, possibly
using logical operators.

Exercise: what does this do? filter(penguins, bill_length_mm > 40,
bill_depth_mm > 20, sex == male)

We can also select particular variables (columns) using the function select(tbl, cols to
select). For example, select species and island:

select(penguins, species, island)

A tibble: 344 x 2
species island
<fct> <fct>

1 Adelie Torgersen
2 Adelie Torgersen
3 Adelie Torgersen
4 Adelie Torgersen
5 Adelie Torgersen
6 Adelie Torgersen
7 Adelie Torgersen
8 Adelie Torgersen
9 Adelie Torgersen
10 Adelie Torgersen
i 334 more rows

94

How many species are represented in the data set? We can use the function distinct(tbl,
cols to select) to retain only the rows that differ from each other:

distinct(select(penguins, species))

A tibble: 3 x 1
species
<fct>

1 Adelie
2 Gentoo
3 Chinstrap

Showing that there are three species, once we removed the duplicates. There are many other
ways to subset observations:

• slice_sample(tbl, howmany, replace = TRUE) sample howmany rows at random
(with replacement)

• sample_sample(tbl, proportion, replace = FALSE) sample a certain proportion
(e.g. 0.2 for 20%) of rows at random without replacement

• slice(tbl, 5:20) extract the rows 5 to 20
• slice_max(penguins, 10, body_mass_g) extract the first 10 rows, once ordered by

body_mass_g

More ways to select columns:

• select(penguins, contains("mm")) select all columns containing the string mm
• select(penguins, -year, -body_mass_g) exclude the columns year and body_mass_g
• select(penguins, matches("length|bill")) select all columns whose names match

a regular expression

4.5 Creating pipelines using %>%

We’ve been calling nested functions, such as distinct(select(penguins, species)). If you
have to add another layer or two, the code would become unreadable. dplyr allows you to “un-
nest” these functions and create a “pipeline” in which you concatenate commands separated
by a special operator, %>%. For example:

penguins %>% # take a data table
select(species) %>% # select a column
distinct() # remove duplicates

95

A tibble: 3 x 1
species
<fct>

1 Adelie
2 Gentoo
3 Chinstrap

does exactly the same operations as the command above, but is much more readable. By
concatenating many commands, you can create incredibly complex pipelines while retaining
readability. It is also quite easy to add another piece of the pipeline in between commands, or
to comment some of the pipeline out.

Another advantage of pipelines is that they help with name completion. In fact, RStudio is
running in the background your pipeline while you type it. Try typing dt %>% filter(and
then start typing bill and press Tab: you will see the options to complete the column name;
choose it with your arrows and hit Return. The back tick-marks will be added automatically
if needed (e.g., column names containing spaces, or starting with a digit).

4.6 Producing summaries

Sometimes we need to calculate statistics on certain columns. For example, calculate the
average body mass of the penguins. We can do this using summarise (you can use British or
American spelling):

penguins %>%
summarise(avg = mean(body_mass_g, na.rm = TRUE))

A tibble: 1 x 1
avg

<dbl>
1 4202.

alternatively, drop_na(body_mass_g) removes all the observations for which
body_mass_g is NA
penguins %>%
drop_na(body_mass_g) %>%
summarise(avg = mean(body_mass_g, na.rm = TRUE))

96

A tibble: 1 x 1
avg

<dbl>
1 4202.

where we used na.rm = TRUE to ignore missing values. This command returns a tbl object
with just the average body mass. You can combine multiple statistics (use first, last, min,
max, n [count the number of rows], n_distinct [count the number of distinct rows], mean,
median, var, sd, etc.):

penguins %>%
summarise(avg = mean(body_mass_g, na.rm = TRUE),

sd = sd(body_mass_g, na.rm = TRUE),
median = median(body_mass_g, na.rm = TRUE))

A tibble: 1 x 3
avg sd median

<dbl> <dbl> <dbl>
1 4202. 802. 4050

4.7 Summaries by group

One of the most useful features of dplyr is the ability to produce statistics for the data once
subsetted by groups. For example, we would like to compute the average body mass by species
and sex:

penguins %>%
drop_na() %>%
group_by(sex, species) %>%
summarise(mean = mean(body_mass_g, na.rm = TRUE))

`summarise()` has grouped output by 'sex'. You can override using the `.groups`
argument.

A tibble: 6 x 3
Groups: sex [2]
sex species mean
<fct> <fct> <dbl>

1 female Adelie 3369.

97

2 female Chinstrap 3527.
3 female Gentoo 4680.
4 male Adelie 4043.
5 male Chinstrap 3939.
6 male Gentoo 5485.

showing that male penguins are heavier for the three species considered.

Exercise: find the average bill_depth_mm and bill_length_mm by species and
sex. Filter the data to consider only observations for the year 2008.

4.8 Ordering the data

To order the data according to one or more variables, use arrange():

penguins %>%
arrange(body_mass_g) # ascending

A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Chinstrap Dream 46.9 16.6 192 2700
2 Adelie Biscoe 36.5 16.6 181 2850
3 Adelie Biscoe 36.4 17.1 184 2850
4 Adelie Biscoe 34.5 18.1 187 2900
5 Adelie Dream 33.1 16.1 178 2900
6 Adelie Torgers~ 38.6 17 188 2900
7 Chinstrap Dream 43.2 16.6 187 2900
8 Adelie Biscoe 37.9 18.6 193 2925
9 Adelie Dream 37.5 18.9 179 2975

10 Adelie Dream 37 16.9 185 3000
i 334 more rows
i 2 more variables: sex <fct>, year <int>

penguins %>%
arrange(desc(body_mass_g)) # descending

A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g

98

<fct> <fct> <dbl> <dbl> <int> <int>
1 Gentoo Biscoe 49.2 15.2 221 6300
2 Gentoo Biscoe 59.6 17 230 6050
3 Gentoo Biscoe 51.1 16.3 220 6000
4 Gentoo Biscoe 48.8 16.2 222 6000
5 Gentoo Biscoe 45.2 16.4 223 5950
6 Gentoo Biscoe 49.8 15.9 229 5950
7 Gentoo Biscoe 48.4 14.6 213 5850
8 Gentoo Biscoe 49.3 15.7 217 5850
9 Gentoo Biscoe 55.1 16 230 5850
10 Gentoo Biscoe 49.5 16.2 229 5800
i 334 more rows
i 2 more variables: sex <fct>, year <int>

4.9 Renaming columns

To rename one or more columns, use rename():

penguins %>%
rename(bm = body_mass_g)

A tibble: 344 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm bm sex
<fct> <fct> <dbl> <dbl> <int> <int> <fct>

1 Adelie Torgersen 39.1 18.7 181 3750 male
2 Adelie Torgersen 39.5 17.4 186 3800 female
3 Adelie Torgersen 40.3 18 195 3250 female
4 Adelie Torgersen NA NA NA NA <NA>
5 Adelie Torgersen 36.7 19.3 193 3450 female
6 Adelie Torgersen 39.3 20.6 190 3650 male
7 Adelie Torgersen 38.9 17.8 181 3625 female
8 Adelie Torgersen 39.2 19.6 195 4675 male
9 Adelie Torgersen 34.1 18.1 193 3475 <NA>
10 Adelie Torgersen 42 20.2 190 4250 <NA>
i 334 more rows
i 1 more variable: year <int>

99

4.10 Adding new variables using mutate

If you want to add one or more new columns, with the content being a function of other
columns, use the function mutate. For example, we are going to add a new column showing
the z-score for the body mass of each individual:

penguins %>%
mutate(zscore_bm = scale(body_mass_g)) %>%
select(species, sex, body_mass_g, zscore_bm)

A tibble: 344 x 4
species sex body_mass_g zscore_bm[,1]
<fct> <fct> <int> <dbl>

1 Adelie male 3750 -0.563
2 Adelie female 3800 -0.501
3 Adelie female 3250 -1.19
4 Adelie <NA> NA NA
5 Adelie female 3450 -0.937
6 Adelie male 3650 -0.688
7 Adelie female 3625 -0.719
8 Adelie male 4675 0.590
9 Adelie <NA> 3475 -0.906
10 Adelie <NA> 4250 0.0602
i 334 more rows

We can pipe the results to ggplot for plotting!

penguins %>%
mutate(zscore_bm = scale(body_mass_g)) %>%
select(species, sex, body_mass_g, zscore_bm) %>%
ggplot() + aes(x = species, y = zscore_bm, colour = sex) +

geom_jitter()

Warning: Removed 2 rows containing missing values (`geom_point()`).

100

−2

−1

0

1

2

Adelie Chinstrap Gentoo
species

zs
co

re
_b

m

sex

female

male

NA

You can use the function transmute() to create a new column and drop the original columns.

Most importantly, you can use mutate and transmute on grouped data. For example, let’s
recompute the z-score of the body_mass_g once the data is grouped by species and sex:

penguins %>%
drop_na() %>%
select(species, sex, body_mass_g) %>%
group_by(species, sex) %>%
mutate(zscore_bm = scale(body_mass_g)) %>%
arrange(body_mass_g)

A tibble: 333 x 4
Groups: species, sex [6]

species sex body_mass_g zscore_bm[,1]
<fct> <fct> <int> <dbl>

1 Chinstrap female 2700 -2.90
2 Adelie female 2850 -1.93
3 Adelie female 2850 -1.93
4 Adelie female 2900 -1.74
5 Adelie female 2900 -1.74
6 Adelie female 2900 -1.74
7 Chinstrap female 2900 -2.20

101

8 Adelie female 2925 -1.65
9 Adelie female 3000 -1.37
10 Adelie female 3000 -1.37
i 323 more rows

4.11 Data wrangling

Data is rarely in a format that is good for computing, and much effort goes into reading the
data and wrestling with it to make it into a good format. As the name implies, tidyverse
strongly advocates for the use of data in tidy form. What does this mean?

• Each variable forms a column
• Each observation forms a row
• Each type of observational unit forms a table

This is often called narrow table format. Any other form of data (e.g., wide table format) is
considered messy. However, often data are not organized in tidy form, or we want to produce
tables for human consumption rather than computer consumption. The package tidyr allows
to accomplish just that. It contains only a few, very powerful functions. To explore this issue,
we build a data set containing the average body mass by species and sex:

penguin_bm <- penguins %>%
drop_na() %>%
group_by(sex, species) %>%
summarise(body_mass = mean(body_mass_g), .groups = "drop") # remove groups after calculation

penguin_bm

A tibble: 6 x 3
sex species body_mass
<fct> <fct> <dbl>

1 female Adelie 3369.
2 female Chinstrap 3527.
3 female Gentoo 4680.
4 male Adelie 4043.
5 male Chinstrap 3939.
6 male Gentoo 5485.

102

4.12 From narrow to wide

Our data is in tidy form. For a paper, we want to show the difference between males and
females in a table:

penguin_bm %>%
pivot_wider(names_from = sex, values_from = body_mass)

A tibble: 3 x 3
species female male
<fct> <dbl> <dbl>

1 Adelie 3369. 4043.
2 Chinstrap 3527. 3939.
3 Gentoo 4680. 5485.

where we have created new column names using the values found in sex (hence, names_from),
and filled each cell with the corresponding value found in body_mass (hence, values_from).
Similarly, if we want to show the data with species as column names, and sex as rows, we can
use:

penguin_bm %>%
pivot_wider(names_from = species, values_from = body_mass)

A tibble: 2 x 4
sex Adelie Chinstrap Gentoo
<fct> <dbl> <dbl> <dbl>

1 female 3369. 3527. 4680.
2 male 4043. 3939. 5485.

4.13 From wide to narrow

For a real-world example, we will make data from:

Tree-ring analysis for sustainable harvest of Millettia stuhlmannii in Mozambique,
I.A.D.Remane M.D.Therrell, South African Journal of Botany Volume 125,
September 2019, Pages 120-125

You can read a tab-separated file from:

103

dt <- read_tsv("https://raw.githubusercontent.com/StefanoAllesina/BIOS_26318/master/data/annual_increment.txt") %>%
select(Age, contains("CAT"))

New names:
Rows: 172 Columns: 55
-- Column specification
-- Delimiter: "\t" dbl
(37): Age, CAT01, CAT03, CAT04A, CAT05B, CAT06, CAT07, CAT08A, CAT09C, C... lgl
(18): ...38, ...39, ...40, ...41, ...42, ...43, ...44, ...45, ...46,
i Use `spec()` to retrieve the full column specification for this data. i
Specify the column types or set `show_col_types = FALSE` to quiet this message.
* `Mean` -> `Mean...32`
* `Mean` -> `Mean...35`
* `` -> `...37`
* `` -> `...38`
* `` -> `...39`
* `` -> `...40`
* `` -> `...41`
* `` -> `...42`
* `` -> `...43`
* `` -> `...44`
* `` -> `...45`
* `` -> `...46`
* `` -> `...47`
* `` -> `...48`
* `` -> `...49`
* `` -> `...50`
* `` -> `...51`
* `` -> `...52`
* `` -> `...53`
* `` -> `...54`
* `` -> `...55`

selecting only age and samples

Each column besides YEAR represents a single tree, and each cell contains the diameter (in cm)
of the tree when it was at a given age. To make this in tidy form, we first create the columns
tree and diameter:

dt <- dt %>%
pivot_longer(-Age, names_to = "tree", values_to = "diameter")

104

and then remove the NAs:

dt <- dt %>% filter(!is.na(diameter))

Now it is easy to plot the growth trajectory of each tree (as in Fig. 3 of the original paper):

dt %>%
ggplot() +
aes(x = Age, y = diameter) +
geom_line(aes(group = tree)) + # note---this makes a line for each tree
geom_smooth(method = "loess") # while the smoothing function considers all trees

`geom_smooth()` using formula = 'y ~ x'

0

20

40

60

80

0 50 100 150
Age

di
am

et
er

4.14 Separate: split a column into two or more

test <- tibble(name = c("Allesina, Stefano", "Kondrashov, Dmitry", "Mir, Amatullah"))
test

105

A tibble: 3 x 1
name
<chr>

1 Allesina, Stefano
2 Kondrashov, Dmitry
3 Mir, Amatullah

test %>% separate(name, into = c("last_name", "first_name"), sep = ", ")

A tibble: 3 x 2
last_name first_name
<chr> <chr>

1 Allesina Stefano
2 Kondrashov Dmitry
3 Mir Amatullah

The complement of separate is called unite.

4.15 Separate rows: from one row to many

test <- tibble(id = c(1, 2, 3, 4), records = c("a;b;c", "c;d", "a;e", "f"))
test

A tibble: 4 x 2
id records

<dbl> <chr>
1 1 a;b;c
2 2 c;d
3 3 a;e
4 4 f

To make it into tidy form, only one record per row:

test %>% separate_rows(records, sep = ";")

106

A tibble: 8 x 2
id records

<dbl> <chr>
1 1 a
2 1 b
3 1 c
4 2 c
5 2 d
6 3 a
7 3 e
8 4 f

4.16 Example: brown bear, brown bear, what do you see?

This exercise uses a dataset from GBIF, the Global Biodiversity Information Facility. You can
download the latest version yourself by doing the following (but just skip ahead if you want
to use the data provided by us).

1. Go to GBIF and click on Occurrences.
2. Under Scientific Name type in Ursus arctos (brown bear), and hit enter.
3. To download the data, create an account on GBIF
4. Then click on Download, and select Simple (which should have a tab-delimited .csv file)
5. Save to the data folder in your working folder.

If you don’t want to go through all this, you can load this previously downloaded file called
Ursus_GBIF.csv from our GitHub repository. The code in the following chunk loads and
displays the contents of the tibble:

you will need ggmap!
library(ggmap)
Ursus_data <- read_tsv("https://raw.githubusercontent.com/StefanoAllesina/BIOS_26318/master/data/Ursus_GBIF.csv")
glimpse(Ursus_data)

Rows: 23,498
Columns: 50
$ gbifID <dbl> 2382421192, 2382420986, 2382420916, 2~
$ datasetKey <chr> "88d8974c-f762-11e1-a439-00145eb45e9a~
$ occurrenceID <chr> "http://arctos.database.museum/guid/U~
$ kingdom <chr> "Animalia", "Animalia", "Animalia", "~
$ phylum <chr> "Chordata", "Chordata", "Chordata", "~
$ class <chr> "Mammalia", "Mammalia", "Mammalia", "~

107

https://www.gbif.org/en/
https://www.gbif.org/en/

$ order <chr> "Carnivora", "Carnivora", "Carnivora"~
$ family <chr> "Ursidae", "Ursidae", "Ursidae", "Urs~
$ genus <chr> "Ursus", "Ursus", "Ursus", "Ursus", "~
$ species <chr> "Ursus arctos", "Ursus arctos", "Ursu~
$ infraspecificEpithet <chr> NA, NA, NA, "horribilis", NA, NA, NA,~
$ taxonRank <chr> "SPECIES", "SPECIES", "SPECIES", "SUB~
$ scientificName <chr> "Ursus arctos Linnaeus, 1758", "Ursus~
$ verbatimScientificName <chr> "Ursus arctos", "Ursus arctos", "Ursu~
$ verbatimScientificNameAuthorship <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ countryCode <chr> NA, "US", NA, NA, "US", NA, NA, "US",~
$ locality <chr> "no specific locality recorded", "no ~
$ stateProvince <chr> NA, "Alaska", NA, NA, "Colorado", NA,~
$ occurrenceStatus <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ individualCount <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ publishingOrgKey <chr> "4cadac10-3e7b-11d9-8439-b8a03c50a862~
$ decimalLatitude <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ decimalLongitude <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ coordinateUncertaintyInMeters <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ coordinatePrecision <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ elevation <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ elevationAccuracy <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ depth <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ depthAccuracy <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ eventDate <dttm> 1800-01-01, 1800-01-01, 1800-01-01, ~
$ day <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ month <dbl> 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1~
$ year <dbl> 1800, 1800, 1800, 1800, 1914, 1938, 1~
$ taxonKey <dbl> 2433433, 2433433, 2433433, 6163845, 2~
$ speciesKey <dbl> 2433433, 2433433, 2433433, 2433433, 2~
$ basisOfRecord <chr> "PRESERVED_SPECIMEN", "PRESERVED_SPEC~
$ institutionCode <chr> "UCM", "UCM", "UCM", "UCM", "UCM", "U~
$ collectionCode <chr> "Mammal specimens", "Mammal specimens~
$ catalogNumber <chr> "UCM:Mamm:5003", "UCM:Mamm:3329", "UC~
$ recordNumber <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ identifiedBy <chr> "T. C. Hart", "unknown", "unknown", "~
$ dateIdentified <dttm> 2013-01-01, 1936-01-01, NA, 2015-10-~
$ license <chr> "CC0_1_0", "CC0_1_0", "CC0_1_0", "CC0~
$ rightsHolder <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ recordedBy <chr> "Collector(s): T. C. Hart", "Collecto~
$ typeStatus <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ establishmentMeans <chr> NA, NA, NA, NA, NA, NA, "MANAGED", NA~
$ lastInterpreted <dttm> 2019-09-03 22:11:14, 2019-09-03 22:1~
$ mediaType <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, N~

108

$ issue <chr> NA, NA, NA, NA, "TAXON_MATCH_HIGHERRA~

You see there are 50 variables in the data set, so it may be useful to remove the ones we don’t
need. For this exercise, our objective is to plot the occurrences of this species on the world
map, so we need two variables for certain: decimalLatitude and decimalLongitude, as well
as the BasisofRecord for additional information. Use your tidyverse skills to create a new
tibble with only those variables. In addition, remove duplicate records from the tibble.

your code goes here!

Now we can plot this data set on the world map, using the useful package maps. To plot, use
the ggplot() syntax with the following addition:

mapWorld <- borders("world", colour="gray50", fill="gray50") # create a layer of borders
now you can call
ggplot() + mapWorld + ...

Note the warning message generated by ggplot. Then consider the map with the locations of
the brown bear specimens. Do any of them seem strange to you? What may be the explanation
behind these strange data point? Now filter out the points that you identified as suspicious
and print out their BasisofRecord. Does this suggest an explanation for the strangeness?

your code goes here!

4.17 Resources

• R for Data Science
• A cool class at U of C in Social Sciences
• Data transformation cheat sheet
• Dealing with dates cheat sheet
• Data import cheat sheet

109

https://hackr.io/tutorial/r-for-data-science
https://cfss.uchicago.edu/syllabus.html
https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf
https://github.com/rstudio/cheatsheets/raw/master/lubridate.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf

5 Distributions and their properties

5.1 Objectives:

• Apply concepts of conditional probability to practical scenarios and questions
• Describe independence as a concept and apply to data sets
• Use random number generators to simulate various distributions
• Be familiar with the shape of several common distributions and describe the role of their

parameters

5.2 Independence

5.2.1 Conditional probability

In the basic definitions of probability, we considered the probabilities of each outcome and
events separately. Let us consider how information about one event affects the probability of
another event. The concept is that if one event (let’s call it 𝐵) is true, unless the event is the
entire space, it rules out some other outcomes. This may affect the probability of other events
(e.g., 𝐴) in the sample space, because knowledge of 𝐵 may rule out some of the outcomes in
𝐴 as well. Here is the formal definition:

Definition: For two events 𝐴 and 𝐵 in a sample space Ω with a probability
measure 𝑃 , the probability of 𝐴 given 𝐵, called the conditional probability,
defined as:

𝑃(𝐴|𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵)

where 𝐴 ∩ 𝐵 or 𝐴, 𝐵 is the intersection of events 𝐴 and 𝐵, also known as “𝐴 and
𝐵”—the event consisting of all outcomes that are in both 𝐴 and 𝐵.

In words, given the knowledge that an event 𝐵 occurs, the sample space is restricted to the
subset 𝐵, which is why the denominator in the definition is 𝑃(𝐵). The numerator encompasses
all the outcomes we are interested in, (i.e., 𝐴), but since we are now restricted to 𝐵, the
numerator consists of all the outcomes of 𝐴 which are also in 𝐵, or 𝐴 ∩ 𝐵. The definition
makes sense in two extreme cases: if 𝐴 = 𝐵 and if 𝐴 and 𝐵 are mutually exclusive:

110

𝑃(𝐵|𝐵) = 𝑃 (𝐵 ∩ 𝐵)/𝑃 (𝐵) = 𝑃(𝐵)/𝑃(𝐵) = 1
If 𝑃(𝐴 ∩ 𝐵) = 0, then 𝑃(𝐴|𝐵) = 0/𝑃(𝐵) = 0
Important note: one common source of confusion about conditional probability is the dif-
ference between the probability of 𝐴 and 𝐵 and the probability of 𝐴 given 𝐵. This is a result
of the discrepancy between everyday word usage and mathematical terminology, because the
statement “what are the odds of finding a tall person who also likes tea?” is hard to distinguish
from “what are the odds that a person who is tall likes tea?” The critical difference between
these two statements is that in the former you start out with no information and are picking
out a person from the entire population, while is in the latter you start out with the knowledge
that a person is tall.

Example: In the classic Mendelian pea experiment, each diploid organism carries two alleles.
The allele 𝐴 is dominant and results in pink flowers, while 𝑎 is recessive and results in white
flowers. There are three possible genotypes (𝐴𝐴, 𝐴𝑎, 𝑎𝑎) and two phenotypes (Pink or White).
For the questions below, assume that two heterozygous pea plants (each having genotype 𝐴𝑎)
are crossed, producing the following table of genotypes with equal probabilities in each cell:

parent A a
A AA (pink) Aa (pink)
a Aa (pink) aa (white)

1. What is the probability that a plant with pink flowers has genotype 𝐴𝐴? Write this down
in terms of conditional probability and explain how it’s different from the probability of
a plant having both pink flower and genotype 𝐴𝐴.

2. What is the probability that a plant with genotype 𝐴𝐴 has pink flowers? Again, write
down the conditional probability and explain how it’s different from the probability of a
plant having both pink flower and genotype 𝐴𝐴.

Lesson: in general,
𝑃(𝑋|𝑌) ≠ 𝑃(𝑌 |𝑋)

5.2.2 Independence

Independence is a fundamental concept in probability that may be misinterpreted without
careful thinking. Intuitively, two events (or random variables) are independent if one does
not influence the other. More precisely, it means that the probability of one event is the
same regardless of whether the other one happens or not. This is expressed precisely using
conditional probabilities:

Definition: Two events 𝐴 and 𝐵 in a sample space Ω with a probability measure
𝑃 are independent if 𝑃(𝐴|𝐵) = 𝑃(𝐴), or equivalently if 𝑃(𝐵|𝐴) = 𝑃(𝐵).

111

Independence is not a straightforward concept. It may be confused with mutual exclusivity, as
one might surmise that if 𝐴 and 𝐵 have no overlap, then they are independent. That however,
is false by definition, since 𝑃(𝐴|𝐵) is 0 for two mutually exclusive events. The confusion stems
from thinking that if 𝐴 and 𝐵 are non-overlapping, then they do not influence each other.
But the notion of influence in this definition is about information; so if 𝐴 and 𝐵 are mutually
exclusive, the knowledge that one of them occurs has an influence of the probability of the
other one occurring, specifically it rules the other one out.

Example: In the sample space of weather phenomena, are the events of snowing and hot
weather independent?

Example: A slightly more subtle example, the lifetime risk of breast cancer is about 1 in 8
for women and about 1 in 1000 for men. Are sex and breast cancer independent?

5.2.3 Usefulness of independence

Independence is a mathematical abstraction, and reality rarely provides us with perfectly
independent variables. But it’s a very useful abstraction in that it enables calculations that
would be difficult or impossible to carry out without this assumption.

First, independence allows for calculating the probability of two events or two random variables
simultaneously. This is a straightforward consequence of the definition conditional probability
(first equality) and independence (second equality):

𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) = 𝑃(𝐴|𝐵) = 𝑃(𝐴)

Multiplying both sides by 𝑃(𝐵), we get the product rule of independence, perhaps the most
widely used formula in applied probability:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

Example: The probability that two randomly selected individuals have red hair–assuming
that the occurrence of this trait is independent–is the square of the probability of red hair in
one individual. (Note that this is never exactly the case for a finite population—why?)

Example: The probability of two alleles of two separate genes (call them A and B) occurring
on the same gamete may be independent or may be linked. In population genetics, the concept
of linkage disequilibrium describes the extent of such linkage; for example, alleles that are
located on separate chromosomes (in eukaryotes) are usually not linked and their occurrence
is independent. The coefficient of linkage disequilibrium is defined as the difference between
what is expected from independence and the actual probability of both alleles being present:

𝐷𝐴𝐵 = 𝑃(𝐴 ∩ 𝐵) − 𝑃(𝐴)𝑃(𝐵)

112

𝑃(𝐴) and 𝑃(𝐵) are the frequencies of the two respective alleles (haplotypes) in the population,
while 𝑃(𝐴 ∩ 𝐵) is the frequency of the haplotypes occurring together in the same copy of the
genome (that is, on the same gamete). For two independent loci, 𝐷𝐴𝐵 = 0, while for loci that
usually occur together the coefficient will be positive, and its magnitude is influenced both by
physical proximity of the loci on a chromosome, the evolutionary history of the species, and
other factors.

Another important consequence of independence has to do with the sum of two independent
random variables. The expectation of the sum of any random variables is linear, which can
be demonstrated using some work with sums, starting from the definition of expectation (the
same can be shown for continuous random variables, using integrals instead of sums):

𝐸(𝑋 + 𝑌) = ∑
𝑖

∑
𝑗

(𝑥𝑖 + 𝑦𝑗)𝑃 (𝑥𝑖, 𝑦𝑗) =

= ∑
𝑖

∑
𝑗

𝑥𝑖𝑃(𝑥𝑖, 𝑦𝑗) + ∑
𝑖

∑
𝑗

𝑦𝑗𝑃(𝑥𝑖, 𝑦𝑗) = ∑
𝑖

𝑥𝑖 ∑
𝑗

𝑃(𝑥𝑖, 𝑦𝑗) + ∑
𝑗

𝑦𝑗 ∑
𝑖

𝑃(𝑥𝑖, 𝑦𝑗) =

Summing up a joint probability distribution over all values of one variable removes that vari-
able, ∑𝑗 𝑃 (𝑥𝑖, 𝑦𝑗) = 𝑃(𝑥𝑖) ∑𝑖 𝑃(𝑥𝑖, 𝑦𝑗) = 𝑃(𝑦𝑗), so this leave us with the two separate
expected values:

= ∑
𝑖

𝑥𝑖𝑃(𝑥𝑖) + ∑
𝑗

𝑦𝑗𝑃(𝑦𝑗) = 𝐸(𝑋) + 𝐸(𝑌)

However, this is not the case for the variance in general (using 𝐸𝑋 and 𝐸𝑌 to indicate the
expected values of 𝑋 and 𝑌 to reduce the number of parentheses):

Var(𝑋 + 𝑌) = 𝐸 [(𝑋 + 𝑌) − (𝐸𝑋 + 𝐸𝑌)]2 =
= 𝐸[(𝑋 − 𝐸𝑋)2 + (𝑌 − 𝐸𝑌)2 − 2(𝑋 − 𝐸𝑋)(𝑌 − 𝐸𝑌)] =

= 𝐸(𝑋 − 𝐸𝑋)2 + 𝐸(𝑌 − 𝐸𝑌)2 − 2𝐸[(𝑋 − 𝐸𝑋)(𝑌 − 𝐸𝑌)] =
The first two terms are the respective variances, while the third term is called the covariance
of 𝑋 and 𝑌 :

= Var(𝑋) + Var(𝑌) − 2Cov(𝑋, 𝑌)
Covariance describes how much two random variables vary together, or more precisely, how
much they deviate from their respective means in the same direction. Thus it should be reason-
able to think that two independent random variables have covariance 0, which is demonstrated
as follows:

113

𝐸[(𝑋 − 𝐸𝑋)(𝑌 − 𝐸𝑌)] = 𝐸(𝑋𝑌) − 𝐸𝑌 𝐸𝑋 − 𝐸𝑌 𝐸𝑋 + 𝐸𝑋𝐸𝑌 = 𝐸(𝑋𝑌) − 𝐸𝑋𝐸𝑌

We can write the expression for the expectation of the random variable comprised of all pairs
of values of 𝑋 and 𝑌 , using the fact that for two independent random variables, 𝑃(𝑥𝑖, 𝑦𝑗) =
𝑃(𝑥𝑖)𝑃 (𝑦𝑗) for all values 𝑥𝑖 and 𝑦𝑗:

𝐸(𝑋𝑌) = ∑
𝑖

∑
𝑗

𝑥𝑖𝑦𝑗𝑃(𝑥𝑖, 𝑦𝑗) = ∑
𝑖

𝑥𝑖𝑃(𝑥𝑖) ∑
𝑗

𝑦𝑗𝑃(𝑦𝑗) = 𝐸𝑋𝐸𝑌

The calculation for two continuous random variables is analogous, only with integrals instead
of sums.

This demonstrates that the covariance of two independent random variables is 0, and thus
that the variance of a sum of two independent random variables is the sum of the two separate
variables.

Example: This property of variance is often used in analysis of noise or error in data. It is
commonly assumed in least squares fitting that noise in data is independent of the signal or
model underlying the data. This is the foundation for statements like “this linear regression
explains 80% of the variance in the data.”

5.3 Probability distribution examples (discrete)

The following are examples of distributions of random variables with discrete values. The first
two have finite support (finitely many values) while the second two have infinite support.

5.3.1 Uniform

The simplest probability distribution in which every value has the same probability (and
one which is sometimes called “purely random” even though any random variable with any
distribution is just as random). The probability distribution for a uniform random variable
with 𝑛 values is 𝑃(𝑥) = 1/𝑛 for any value 𝑥.

low <- 0 # minimum value
high <- 10 # maximum value
values <- low:high # vector of discrete values of the RV
num <- length(values)
probs <- rep(1 / num, num) # uniform mass function vector
barplot(probs, names.arg = values, xlab = 'values', ylab = 'probability',

main = paste("uniform distribution on integers from ", low, "to ", high))

114

0 1 2 3 4 5 6 7 8 9 10

uniform distribution on integers from 0 to 10

values

pr
ob

ab
ili

ty

0.
00

0.
04

0.
08

unif.exp <- sum(values*probs)
paste("The expected value of uniform distribution is", unif.exp)

[1] "The expected value of uniform distribution is 5"

unif.var <- sum((unif.exp - values)^2*probs)
paste("The variance of uniform distribution is", unif.var)

[1] "The variance of uniform distribution is 10"

Exercise: experiment with the low and high values to see how the expectation and variance
depend on them. Can you postulate a relationship without looking it up?

5.3.2 Binomial

Binary or Bernoulli trials have two discrete outcomes (mutant/wild-type, win/lose, etc.). The
number of “successes” out of a sequence of 𝑛 independent binary trials with probability of
success 𝑝 is described by the binomial distribution.

n <- 10 # the number of trials
p <- 0.3 # the probability of success in one trial
values <- 0:n # vector of discrete values of the binomial

115

probs <- dbinom(values, n, p)
barplot(probs, names.arg = values, xlab = 'values', ylab = 'probability',

main = paste("binomial distribution with n=", n, "and p=", p))

0 1 2 3 4 5 6 7 8 9 10

binomial distribution with n= 10 and p= 0.3

values

pr
ob

ab
ili

ty

0.
00

0.
10

0.
20

bin.exp <- sum(values*probs)
paste("The expected value of binomial distribution is", bin.exp)

[1] "The expected value of binomial distribution is 3"

bin.var <- sum((bin.exp - values)^2*probs)
paste("The variance of binomial distribution is", bin.var)

[1] "The variance of binomial distribution is 2.1"

Exercise: Try different values of 𝑛 and 𝑝 and postulate a relationship with the expectation
and variance.

5.3.3 Geometric

The random variable is the first “success” in a string of independent binary trials and the
distribution describes the probability of any non-negative value. It may be pretty intuitive

116

that since all the trials have the same probability of success, the distribution with have a
geometric (exponential) form—try to figure out the exact formula for the probability density
without looking it up!

p <- 0.3 # the probability of success
low <- 0 # minimum value
high <- 20 # maximum value
values <- low:high # vector of discrete values of the RV
probs <- dgeom(values, p)
barplot(probs, names.arg = values, xlab = 'values', ylab = 'probability', main = paste("geometric distribution with p=", p))

0 2 4 6 8 10 12 14 16 18 20

geometric distribution with p= 0.3

values

pr
ob

ab
ili

ty

0.
00

0.
10

0.
20

0.
30

geom.exp <- sum(values*probs)
paste("The expected value of geometric distribution is", geom.exp)

[1] "The expected value of geometric distribution is 2.32030059650472"

geom.var <- sum((geom.exp - values)^2*probs)
paste("The variance of geometric distribution is", geom.var)

[1] "The variance of geometric distribution is 7.52697882945385"

Exercise: Calculate the expectations and variances for different values of 𝑝 and report how
they are related.

117

5.3.4 Poisson

Suppose that there is a discrete process that occurs with some average rate 𝜆, which describes
the expected number of occurrences of these events in a unit of time. The Poisson random
variable is the number of such occurrences, and the distribution describes the probability of
any non-negative value.

low <- 0 # minimum value
high <- 20 # maximum value
lambda <- 10 # Poisson rate
values <- low:high # vector of discrete values of the RV
probs <- dpois(values, lambda)
barplot(probs, names.arg = values, xlab = 'values', ylab = 'probability',

main = paste("Poisson distribution with lambda=", lambda))

0 2 4 6 8 10 12 14 16 18 20

Poisson distribution with lambda= 10

values

pr
ob

ab
ili

ty

0.
00

0.
04

0.
08

0.
12

pois.exp <- sum(values*probs)
paste("The expected value of Poisson distribution is", pois.exp)

[1] "The expected value of Poisson distribution is 9.96545658024143"

pois.var <- sum((pois.exp - values)^2*probs)
paste("The variance of Poisson distribution is", pois.var)

118

[1] "The variance of Poisson distribution is 9.77875058489889"

Exercise: Calculate the expectations and variances for different values of 𝜆 and report how
they are related.

5.4 Probability distribution examples (continuous)

In the following examples with continuous variables we cannot calculate the means and vari-
ances directly from the density function. One way to do it is to produce a sample using the
random number generator and calculate the mean and variance of that sample.

5.4.1 Uniform

The continuous equivalent of the discrete uniform distribution.

low <- 0 # minimum value
high <- 10 # maximum values
number <- 100
values <- seq(low, high, length.out = number) # vector of discrete values of the RV
probs <- dunif(values, min=low, max = high)
plot(values, probs, t='l', xlab = 'values', ylab = 'density',

main = paste("Uniform distribution on interval from ", low, "to ", high))

0 2 4 6 8 10

0.
06

0.
10

0.
14

Uniform distribution on interval from 0 to 10

values

de
ns

ity

119

n <- 1000 # sample size
unif.sample <- runif(n, low, high) # generate sample
unif.exp <- mean(unif.sample)
paste("The expected value of uniform distribution is", unif.exp)

[1] "The expected value of uniform distribution is 5.03010573810199"

unif.var <- var(unif.sample)
paste("The variance of uniform distribution is", unif.var)

[1] "The variance of uniform distribution is 8.43819038263098"

Exercise: experiment with the width of the interval to see how it affects the expectation and
variance.

5.4.2 exponential

The random variable describes the length of time between independent discrete events occur-
ring with a certain rate, like we saw in the Poisson distribution.

low <- 0 # minimum value
high <- 20 # maximum values
number <- 100
r <- 0.5
values <- seq(low,high,length.out = number) # vector of discrete values of the RV
probs <- dexp(values, r)
plot(values, probs, t='l', xlab = 'values', ylab = 'density',

main = paste("Exponential distribution with rate=", r))

120

0 5 10 15 20

0.
0

0.
2

0.
4

Exponential distribution with rate= 0.5

values

de
ns

ity

n <- 1000 # sample size
exp.sample <- rexp(n, r) # generate sample
exp.exp <- mean(exp.sample)
paste("The expected value of exponential distribution is", exp.exp)

[1] "The expected value of exponential distribution is 1.99624413873653"

exp.var <- var(exp.sample)
paste("The variance of exponential distribution is", exp.var)

[1] "The variance of exponential distribution is 3.34052270889785"

Exercise: What is the relationship between the rate and the expectation and variance?

5.4.3 normal distribution

The normal distribution, sometimes written 𝑁(𝜇, 𝜎) comes up everywhere (e.g., in the limit
of the Poisson distribution for large 𝑛). The two parameters are simply the mean and the
standard deviation. The reason for its ubiquity is that it is that any sum of a large number
of independent random variables converges to the normal, formalized by the Central Limit
Theorem:

121

For a set of 𝑛 IID random variables {𝑋𝑖} with mean 𝜇 and standard deviation 𝜎,
the sample mean �̄�𝑛 has the property:

lim
𝑛→∞

= �̄�𝑛 − 𝜇
𝜎 = 𝑁(0, 1)

where 𝑁(0, 1) stands for the normal distribution with mean 0 and standard devia-
tion 1.

low <- 0 # minimum value
high <- 10 # maximum values
number <- 100
mu <- 5
sigma <- 0.5
values <- seq(low,high,length.out = number) # vector of discrete values of the RV
probs <- dnorm(values, mu, sigma)
plot(values, probs, t='l',xlab = 'values', ylab = 'density',

main = paste("Normal distribution with mean=", mu, "and sigma=", sigma))

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Normal distribution with mean= 5 and sigma= 0.5

values

de
ns

ity

n <- 1000 # sample size
norm.sample <- rnorm(n, mu, sigma) # generate sample
norm.exp <- mean(norm.sample)
paste("The expected value of normal distribution is", norm.exp)

[1] "The expected value of normal distribution is 4.97297567441964"

122

norm.var <- var(norm.sample)
paste("The variance of normal distribution is", norm.var)

[1] "The variance of normal distribution is 0.257190867094748"

5.5 Application of normal distribution: confidence intervals

The most important use of the normal distribution has to do with estimation of means, because
the normal distribution describes the sampling distributions of means of IID samples. The
mean of that sampling distribution is the mean of the population distribution that is being
sampled, and the standard deviation is called the standard error and is related to the standard
deviation of the population 𝜎𝑋 as follows: 𝜎𝑆𝐸 = 𝜎/𝑛, where 𝑛 is the sample size.

numsamples <- 1000
size <- 100
compute mean for different samples
samplemeans <- replicate(n = numsamples, mean(sample(0:10, size, replace = TRUE)))
break_points <- seq(min(samplemeans), max(samplemeans),

(max(samplemeans) - min(samplemeans)) / 20)
hist(samplemeans, breaks = break_points, freq = FALSE,

cex.axis = 1.5, cex.lab = 1.5,
main= '1000 means of samples of size 100')

sigma <- 10 / sqrt(12) / sqrt(size)
mu <- 5
range <- seq(min(samplemeans), max(samplemeans), sigma / 100)
lines(range,

dnorm(range, mu, sigma),
t = 'l', lwd = 3, col = 2, lty = 1, cex.axis = 1.5, cex.lab = 1.5)

123

1000 means of samples of size 100

samplemeans

D
en

si
ty

4.0 4.5 5.0 5.5

0.
0

0.
6

1.
2

Exercise: Try using different distributions from above and see if the sample means still converge
to the normal distribution.

The following script calculates a confidence interval based on a sample.

Computing confidence intervals
qnorm(0.5) # the value that divides the density function in two

[1] 0

qnorm(0.95) # the value such that 95% of density is to its left

[1] 1.644854

size <- 100 # sample size
alpha <- 0.95 # significance level
sample <- runif(size)
s <- sd(sample) / sqrt(size) # standard error
z <- qnorm((1 - alpha) / 2) # z-value
left <- mean(sample) + s * z
right <- mean(sample) - s * z
print(right)

124

[1] 0.569315

print(left)

[1] 0.4585393

Exercise: Modify that script to report whether the confidence interval captures the true mean.
Use a loop structure (as in the script above) to generate 1000 sample means and report how
many of them are within the theoretical confidence interval. Does this match the fraction you
expect from the significance level? Try different significance levels and sample sizes and report
what you discover.

5.6 Identifying type of distribution in real data

Let us consider the penguin data set again:

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(palmerpenguins)
str(penguins)

tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...

125

$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

A simple way to visualize a distribution is to plot a histogram: data are binned, and the height
of the bin represents counts (or frequencies). Here are the histograms of distributions of flipper
lengths of all the species of penguins separated by sex:

ggplot(penguins) +
aes(x = flipper_length_mm, color = sex, fill=sex) + geom_histogram(alpha = 0.5, position = "identity")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).

0

5

10

15

180 200 220
flipper_length_mm

co
un

t

sex

female

male

NA

And here are the histograms of flipper lengths separated by species:

ggplot(penguins) +
aes(x = flipper_length_mm, color = species, fill=species) + geom_histogram(alpha = 0.5, position = "identity")

126

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing non-finite values (`stat_bin()`).

0

5

10

15

20

25

180 200 220
flipper_length_mm

co
un

t

species

Adelie

Chinstrap

Gentoo

To decide systematically which of these distributions are closer to a theoretical distribution
is via a Quantile-Quantile (QQ) plot, which plots the quantile value from a sample against
the quantiles from a given distribution with best-fit parameters. If the data were to follow
the distribution closely, you should find all the points lying on the identity line. For example,
here is how to compare a data set drawn from the normal random number generator with the
normal distribution:

library(fitdistrplus)

Loading required package: MASS

Attaching package: 'MASS'

The following object is masked from 'package:dplyr':

select

127

Loading required package: survival

test_data <- tibble(x = rnorm(n = 500, mean = 3, sd = 1.5))
example: find best-fitting Normal
my_normal <- fitdistr(test_data$x, densfun = "normal")
note the slight discrepancies
print(my_normal)

mean sd
2.97172114 1.47390609
(0.06591508) (0.04660900)

ggplot(test_data, aes(sample = x)) +
stat_qq(distribution = qnorm, dparams = my_normal$estimate) +
stat_qq_line(distribution = qnorm, dparams = my_normal$estimate) +
geom_abline(intercept = 0, slope = 1, linetype = 2, col = "red") +
ggtitle("Q-Q plot assuming best-fitting Normal distribution")

0.0

2.5

5.0

7.5

0.0 2.5 5.0 7.5
x

y

Q−Q plot assuming best−fitting Normal distribution

Now let us assess the “normality” of the flipper length data separated by sex and separated
by species:

128

dataset <- penguins %>% dplyr::filter(sex == 'female') %>% drop_na() %>% dplyr::select(flipper_length_mm)
my_normal <- fitdistr(x = as_vector(dataset), densfun = "normal")
note the slight discrepancies
print(my_normal)

mean sd
197.3636364 12.4628373
(0.9702306) (0.6860566)

ggplot(dataset, aes(sample = flipper_length_mm)) +
stat_qq(distribution = qnorm, dparams = my_normal$estimate) +
stat_qq_line(distribution = qnorm, dparams = my_normal$estimate) +
geom_abline(intercept = 0, slope = 1, linetype = 2, col = "red") +
ggtitle("Q-Q plot assuming best-fitting Normal distribution of flipper lenth for female penguins")

150

175

200

225

160 180 200 220
x

y

Q−Q plot assuming best−fitting Normal distribution of flipper lenth for female penguins

dataset <- penguins %>% dplyr::filter(sex == 'male') %>% drop_na() %>% dplyr::select(flipper_length_mm)
my_normal <- fitdistr(x = as_vector(dataset), densfun = "normal")
note the slight discrepancies
print(my_normal)

mean sd

129

204.5059524 14.5045137
(1.1190475) (0.7912861)

ggplot(dataset, aes(sample = flipper_length_mm)) +
stat_qq(distribution = qnorm, dparams = my_normal$estimate) +
stat_qq_line(distribution = qnorm, dparams = my_normal$estimate) +
geom_abline(intercept = 0, slope = 1, linetype = 2, col = "red") +
ggtitle("Q-Q plot assuming best-fitting Normal distribution of flipper lenth for male penguins")

150

180

210

240

180 200 220 240
x

y

Q−Q plot assuming best−fitting Normal distribution of flipper lenth for male penguins

In contrast with the simulated data, here the data points and the black line that attempts to
capture them is quite different from the identity line (red). This means this distribution is for
from normal, as can be seen from the histograms of the flipper lengths grouped by sex.

130

6 Hypothesis testing

A large number of scientific questions can be expressed as an hypothesis test—essentially a
yes/no question, such as “are two samples drawn from distributions with the same mean?”,
or “Is the frequency of an allele in a population greater than 0.1?”. Several tests have been
developed, each with a specific type of question in mind. There is a dangerous tendency to
view statistics as a collection of tests, and to practice it by plugging in your data set into the
correct test, expecting that the test will spit out the correct decision. The purpose of this
lesson is to demonstrate that using and interpreting statistical tests requires careful thinking
to avoid serious errors.

6.1 Test results vs. the truth

A statistical test begins by stating the null hypothesis, usually one that is expected, or that
shows no effect: for example, that two samples come from a distribution with the same mean,
or that a rare allele has frequency of less than 0.1. One may state the alternative hypothesis
explicitly, although it’s usually the logical converse of the null, i.e., the two samples have
different population means, or the allele has frequency greater than 0.1.

After the hypothesis is stated, the data are collected and are used to test the hypothesis. By
default, the null hypothesis is assumed to be true, and the test assesses whether the data
provide sufficient evidence against the null hypothesis—in which case the null hypothesis is
rejected. There is an adversarial relationship: either the data knock off the hypothesis, or
else they fail to do so. Standard terminology reflects this somewhat counter-intuitive setup:
rejecting the null hypothesis is called a positive test result, while not rejecting it is called
a negative result.

The fundamental assumption of this process is that the truth value of the hy-
pothesis is set prior to the collection of data. For example, if one could observe all of
the genomes, the frequency of the allele would be known exactly, so this truth exists prior to
the hypothesis testing. Because we typically can only observe a sample (and not the entire
universe of data), we might end up erroneously rejecting the null hypothesis when it is in
fact true, or not rejecting it when it is in fact false. The possible outcomes of a test can be
organized in the table:

131

H0 True False
Reject False Positive True Positive
Not Reject True Negative False Negative

The values at the top describe the truth status of the hypothesis, while the decisions in the
left column are the result of using data to test the hypothesis. Note: the words false and true
in describing the test result do not refer to the hypothesis, but to whether the result is correct!
For example, if the frequency of the allele were 0.09 but the test for the hypothesis that the
frequency is less than 0.1 resulted in rejecting that hypothesis, that would be a false positive
result (the null hypothesis is true but the test rejected it.)

6.2 Types of errors

As mentioned above, sometimes a hypothesis test makes the wrong decision, which is called an
error. There are two different kinds of errors: rejecting a true null hypothesis, called a Type
I error, and not rejecting a false null hypothesis, called a Type II error.

Example: In the case above of testing for the same mean: if the samples are taken from
distributions with the same mean, but the hypothesis is rejected, this is called a false positive
(Type I error). If the samples come from distributions with different means, but the hypothesis
is not rejected, this is called a false negative (Type II error.)

As a scientist, would you rather make a Type I error (make an erroneous discovery), or a Type
II error (fail to make a discovery)?

6.3 Test parameters and p-values

The sensitivity of a test is the probability of obtaining the positive result, given a false
hypothesis; and the specificity of a test is the probability of obtaining the negative result,
given a true hypothesis. The Type I error rate is the probability of obtaining the positive
result, given a true hypothesis (complementary to specificity), and the Type II error rate is
the probability of obtaining the negative result, given a false hypothesis (complementary to
sensitivity).

All four parameters (rates) of a binary test are summarized as follows:

Sen = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 ; Spec = 𝑇 𝑁

𝑇 𝑁 + 𝐹𝑃

FPR = 𝐹𝑃
𝑇 𝑁 + 𝐹𝑃 ; FNR = 𝐹𝑁

𝑇 𝑃 + 𝐹𝑁

132

The notation TP, FP, etc. represents the frequency or count of true positives, false positives,
etc., out of a large number of experiments with known truth status of the hypothesis.

Knowledge of sensitivity and specificity determine the Type I and Type II error rates of a test
since they are complementary events.

Of course, it is desirable for a test to be both very sensitive (reject false null hypotheses,
detect disease, convict guilty defendants) and very specific (not reject true null hypotheses,
correctly identify healthy patients, acquit innocent defendants), but no test is perfect, and
sometimes it makes the wrong decision. This is where statistical inference comes into play:
given some information about these parameters, a statistician can calculate the error rate in
making different decisions.

The probability that a given data set is produced from the model of the null hypothesis is
called the p-value of a test. More precisely:

For a given data set 𝐷 and a null hypothesis 𝐻0, the p-value is the probability of
obtaining a result as far from expectation or farther than the observed data, given
the null hypothesis.

The p-value is the most used, misused, and even abused quantity in statistics, so please think
carefully about its definition. One reason this notion is frequently misused is because it is
very tempting to conclude that the p-value is the probability of the null hypothesis being
true, based on the data. That is not the case! The definition has the opposite direction of
conditionality—we assume that the null hypothesis is true, and based on that calculate the
probability of obtaining a pattern as extreme or more extreme than what observed in the data.
There is no way (according to classical “frequentist” statistics) of assigning a probability to
the truth of a hypothesis, because it is not the result of an experiment.

Typically, one sets a critical threshold bounding the probability of making a Type I error in a
test to a “small” number (often, 𝛼 = 0.05 or 0.01), and calls the result of a test “significant”
if the p-value is less than 𝛼.

For example, consider samples of size 𝑛 taken from two normal distributions (with unobserved
means 𝜇1, 𝜇2). We can generate the data:

generate_samples <- function(n, mu1, mu2){
return(data.frame(sample1 = rnorm(n = n, mean = mu1, sd = 1),

sample2 = rnorm(n = n, mean = mu2, sd = 1)))
}

my_sample <- generate_samples(1000, 1, 1.01)

and use a Student’s t-test to probe whether the means differ:

133

two-tailed (diff in means = 0)
Student's (assumes equal variances)
(for Welch's t-test, var.equal = FALSE)
t.test(my_sample$sample1,

my_sample$sample2,
var.equal = TRUE)

Two Sample t-test

data: my_sample$sample1 and my_sample$sample2
t = -1.2728, df = 1998, p-value = 0.2032
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.14369078 0.03058431
sample estimates:
mean of x mean of y
0.9928959 1.0494491

Exercise: Can you detect a “significant difference in means” (assuming 𝛼 = 0.05)? What if
you take a much larger sample? What if the difference in means is more pronounced?

6.4 Multiple comparisons

What if we were to produce several samples? E.g., measure difference between males and
females reflectance in birds at several locations? Suppose that in fact the reflectance is the
same for male and female (𝜇1 = 𝜇2 = 1), that for each location we capture and measure 10
males and 10 females, and that we repeat this across 2500 locations.

First, let’s write a little function that returns the p-values for the t-test

get_p_value_t_test <- function(my_sample){
test_results <- t.test(my_sample$sample1,

my_sample$sample2,
var.equal = TRUE)

return(test_results$p.value)
}

and now simulate the data:

134

pvalues <- replicate(n = 2500,
expr = get_p_value_t_test(generate_samples(10, 1, 1)))

How many times do we detect a “significant difference in reflectance” when setting 𝛼 = 0.05
(even though we know that males and females are sampled from the same distribution)?

sum(pvalues < 0.05)

[1] 125

You should get a number of “significant” tests that is about 2500 ⋅ 0.05 = 125. In fact, the
distribution of p-values when the data are sampled from the null hypothesis is approximately
uniform:

hist(pvalues)

Histogram of pvalues

pvalues

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

This means that when you are performing multiple tests, some will turn out to find “significant”
differences even when there are none. Again, this is better summarized by xkcd:

Exercise: what happens to the distribution of p-values if the means are quite different (e.g.,
𝜇1 = 1, 𝜇2 = 0.9)?

135

6.5 Corrections for multiple comparisons

The main approach to deal with the problem of multiple comparisons is to adjust the p-values.
For example, in Bonferroni correction one consider as significant test results whose associated
p-value is ≤ 𝛼/𝑛, where 𝑛 is the number of tests performed (equivalently, redefine the p-values
as 𝑝′ = min(𝑝𝑛, 1). Clearly, this correction becomes overly conservative when the number of
tests is large. For example, in biology:

• Gene expression In a typical microarray experiment, we contrast the differential ex-
pression of tens of thousands of genes in treatment and control tissues.

• GWAS In Genomewide Association Studies we want to find SNPs associated with a
given phenotype. It is common to test tens of thousands or even millions of SNPs for
significant associations.

• Identifying binding sites Identifying candidate binding sites for a transcriptional
regulator requires scanning the whole genome, yielding tens of millions of tests.

The funniest example of this problem is the fMRI of the dead salmon: a dead salmon “was
shown a series of photographs depicting human individuals in social situations with a specified
emotional valence. The salmon was asked to determine what emotion the individual in the
photo must have been experiencing.” The researchers showed that if multiple comparisons were
not accounted for, one would detect a cluster of active voxels in the brain, with a cluster-level
significance of p = 0.001.

The widespread use of GWAS and other techniques that are trying to find a needle in a haystack
led to the development of many interesting techniques. Here an interesting account.

Adjusting p-values in R:

original_pvalues <- c(0.01, 0.07, 0.1, 0.44)
p.adjust(original_pvalues, method = "bonferroni")

[1] 0.04 0.28 0.40 1.00

6.6 Two problems with science

6.6.1 Selective reporting

We have seen above that setting 𝛼 = 0.05 means that we are going to make false discoveries
at this rate. In science, we prefer publishing positive results—negative results are difficult to
publish and attract little attention. Suppose that 20 research groups around the world set out
to test the same hypothesis, which is false. Then there is a good chance at least one group will

136

http://prefrontal.org/files/posters/Bennett-Salmon-2009.pdf
http://lybird300.github.io/2015/10/19/multiple-test-correction.html

reject the null hypothesis, and pursue publication for their “discovery”. The tendency to put
negative studies in the files drawer and forget about them causes the so called publication
bias (aka selective reporting): by favoring positive results over negative ones, we greatly
increase the chance that our conclusions are wrong. Note that these would cause the results
of the paper to be largely impossible to reproduce, and the reproducibility crisis in the
sciences is partially due to selective reporting.

6.6.2 P-hacking

One big violation of good experimental design is known as p-value “fishing” (or p-hacking):
repeating the experiment, or increasing the sample size, until the p-value is below the desired
threshold, and then stopping the experiment. Using such defective design dramatically lowers
the likelihood that the result is a true positive. And of course there is actual fraud, or fudging
of data, which contributes to some bogus results.

An insidious cousin of p-hacking was dubbed by Andrew Gelman “the garden of forking
paths” in this paper. The issue arises in complex problems with multi-variable noisy datasets
(aren’t all interesting ones like that?) Essentially, with many choices and degrees of freedom in
a problem, it is easy to convince yourself that the choice you made (data cleaning, parameter
combinations, etc.) is the correct one because it gives the strongest results. Without a clearly
stated hypothesis, experimental design, and data processing details prior to data collection,
this enchanted garden can lead even a well-intentioned researcher astray.

6.7 Readings

Good readings on these and related issues:

• Why Most Published Research Findings Are False
• Decline effect
• The truth wears off
• The Extent and Consequences of P-Hacking in Science
• A manifesto for reproducible science
• Spoiled Science

6.8 How to fool yourself with p-hacking (and possibly get fired!)

We are going to try our hand at p-hacking, to show how easy it is to get fooled when you
have a sufficiently large and complex data set. The file data/medals.csv contains the total
number of medals won at the Olympic games (Summer or Winter) by country, sport and
gender. We have a simple, and reasonable (?) hypothesis: because the amount of money

137

http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://en.wikipedia.org/wiki/Decline_effect
https://www.newyorker.com/magazine/2010/12/13/the-truth-wears-off
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002106
https://www.nature.com/articles/s41562-016-0021
https://www.chronicle.com/article/Spoiled-Science/239529

available to Olympic teams is finite, whenever a country invests in the male team, this will be
at the detriment of the female team. To test this hypothesis, we measure whether the number
of medals won by a national female team in a year is negatively correlated with the number
of medals won by the male team.

Let’s read the data, and take a peak:

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

dt <- read_csv("data/medals.csv")

Rows: 6915 Columns: 5
-- Column specification --
Delimiter: ","
chr (2): NOC, Sport
dbl (3): Year, F, M

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

dt

A tibble: 6,915 x 5
NOC Year Sport F M
<chr> <dbl> <chr> <dbl> <dbl>

1 AFG 2008 Taekwondo 0 1
2 AFG 2012 Taekwondo 0 1
3 AHO 1988 Sailing 0 1
4 ALG 1984 Boxing 0 2

138

5 ALG 1992 Athletics 1 0
6 ALG 1992 Boxing 0 1
7 ALG 1996 Athletics 0 1
8 ALG 1996 Boxing 0 2
9 ALG 2000 Athletics 1 3
10 ALG 2000 Boxing 0 1
i 6,905 more rows

First, let’s see whether our hypothesis works for the whole data:

cor(dtF, dtM)

[1] 0.1651691

The correlation is positive: more medals for the men tend to correspond to more medals for the
women. This correlation is not very strong, but is it “significant”? We can run a correlation
test:

cor.test(dtF, dtM)

Pearson's product-moment correlation

data: dt$F and dt$M
t = 13.924, df = 6913, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1421521 0.1880075
sample estimates:

cor
0.1651691

Indeed! The confidence intervals are far from 0: the correlation is definitely positive. Should
we give up? Of course not! Just as for the jelly beans, we can p-hack our way to glory by
subsetting the data. We are going to test each discipline independently, and see whether we
can get a robustly negative correlation for any discipline. Because we are serious scientists,
we are going to consider only disciplines for which we have at least 50 data points, to avoid
results that are due to small sample sizes. Let’s write a code:

139

dt <- dt %>% group_by(Sport) %>% mutate(sample_size = n()) %>% ungroup()
correlations <- dt %>%
filter(sample_size >= 50) %>%
group_by(Sport) %>%
summarise(cor = cor(`M`, `F`),

pvalue = cor.test(`M`, `F`)$p.value) %>%
ungroup()

Now let’s see whether there are highly significant negative correlations:

my_results <- correlations %>% filter(pvalue < 0.05, cor < 0)
my_results

A tibble: 9 x 3
Sport cor pvalue
<chr> <dbl> <dbl>

1 Basketball -0.579 7.86e- 8
2 Football -0.796 6.75e-23
3 Handball -0.810 5.28e-16
4 Hockey -0.585 4.16e- 9
5 Ice Hockey -0.302 8.10e- 3
6 Modern Pentathlon -0.561 3.57e- 8
7 Volleyball -0.545 2.18e- 6
8 Water Polo -0.688 3.41e-14
9 Weightlifting -0.138 2.33e- 2

Let’s plot our results to convince ourselves that they are strong:

ggplot(dt %>% inner_join(my_results)) +
aes(x = `M`, y = `F`) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~Sport, scales = "free")

140

Volleyball Water Polo Weightlifting

Hockey Ice Hockey Modern Pentathlon

Basketball Football Handball

0.0 2.5 5.0 7.5 10.0 12.5 0 5 10 15 20 0.0 2.5 5.0 7.5

0 10 20 30 40 0 5 10 15 20 25 0 1 2 3 4 5

0 5 10 0 5 10 15 20 0 5 10 15 20
−5

0
5

10
15

−0.5
0.0
0.5
1.0
1.5
2.0

0
1
2
3
4

0

10

0
5

10
15
20

−5
0
5

10

0

5

10

−20
−10

0
10

0

5

10

M

F

That’s it! Should we rush to publish our results? Not quite: we have p-hacked our way to
some highly significant results, but we did not correct for the number of tests we’ve made, and
what we would do is to selectively reporting our strong results. In fact, we can do something
very simple to convince ourselves that our results do not make much sense: just run the code
again, but reporting significant positive correlations…

my_results <- correlations %>% filter(pvalue < 0.05, cor > 0)
ggplot(dt %>% inner_join(my_results)) +
aes(x = `M`, y = `F`) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~Sport, scales = "free")

141

Rowing Swimming

Diving Figure Skating Luge

Athletics Canoeing Cross Country Skiing

0 10 20 30 40 50 0 10 20 30 40

0 2 4 6 0 2 4 6 8 0 2 4 6

0 20 40 60 0 5 10 0 3 6 9
0.0
2.5
5.0
7.5

10.0
12.5

0
1
2
3

0
2
4
6
8

0.0
2.5
5.0
7.5

0
10
20
30

0

10

20

0
2
4
6
8

0

10

20

M

F

You can see that we’ve got about the same number of sports testing significant for positive
correlation! Bonus question what about figure skating?

142

7 Likelihood and Bayes

• understand the difference between likelihood and probability
• maximum likelihood estimation
• calculate positive predictive value of a hypothesis test
• interpret the results of Bayesian inference

7.1 Likelihood and estimation

7.1.1 likelihood vs. probability

In everyday English, probability and likelihood are synonymous. In probability and statistics,
however, the two are distinct, although related, concepts. The definition of likelihood is based
on the notion of conditional probability that we defined in week 2, applied to a data set and
a particular probability model 𝑀 :

𝐿(𝑀 | 𝐷) = 𝑃(𝐷 | 𝑀)

The model is based on a set of assumptions that allow us to calculate probabilities of out-
comes of a random experiment, typically a random variable with a well-defined probability
distribution function.

Example. 𝑀 may represent the binomial random variable, based on the assumptions that
the data are strings of 𝑛 independent binary outcomes with a set probability 𝑝 of “success.”
We then have the following formula for the probability of obtaining 𝑘 successes:

𝑃(𝑘; 𝑛, 𝑝) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

Suppose we think we have a fair coin and we flip it ten times and obtain 4 heads and 6 tails.
Then the likelihood of our model (a binomial random variable with 𝑝 = 0.5 with 𝑛 = 10) based
on our data (𝑘 = 4) is:

𝐿(𝑝 = 0.5, 𝑛 = 10 | 𝑘 = 4) = 𝑃(𝑘 = 4 | 𝑛 = 10, 𝑝 = 0.5) = (10
4)0.54(0.5)6

143

To calculate this precisely, it is easiest to use the R function dbinom():

print(dbinom(4,10,0.5))

[1] 0.2050781

So the likelihood of this data set being produced by a fair coin is about 20.5%.

This certainly looks like a probability — in fact we calculated it from a probability distribution
function, so why do we call it a likelihood? There are two fundamental differences between
the two, one mostly abstract, the other more grounded.

First, a model (or model parameters) is not a random variable, because it comes from an
assumption we made in our heads, not from an outcome of a random process. This may seem
to be an abstract, almost philosophical distinction, but how would you go about assigning
probabilities to all the models one can come up with? Would they vary from person to person,
because one may prefer to use the binomial random variable, and another prefers Poisson?
You see how this can get dicey if we think of these in terms of the traditional “frequency of
outcomes” framework of probability.

Second, and more quantitatively relevant, is that likelihoods do not satisfy the fundamental
axiom of probability: they do not add up to one. Remember that probabilities were defined
on a sample space of all outcomes of a random experiment. Likelihoods apply to models or
their parameters, and there are usually uncountably many models - in fact it’s not possible to
even describe all the possible models in vague terms! Even if we agree that we’re evaluating
only one type of model, e.g. the binomial random variable, the likelihood parameter 𝑝 does
not work like a probability, because there is a non-zero likelihood for any value 𝑝 (technically,
the coin could have any degree of unfairness!) so adding up all of the likelihoods will results
in infinity.

7.1.2 maximizing likelihood

One of the most common applications of likelihood is to find the model or model parameters
that give the highest likelihood based on the data, and call those the best statistical estimate.
Here are the symbols we will use in this discussion:

• 𝐷: the observed data
• 𝜃: the free parameter(s) of the statistical model
• 𝐿(𝜃 | 𝐷): the likelihood function, read “the likelihood of 𝜃 given the data”
• ̂𝜃: the maximum-likelihood estimates (m.l.e.) of the parameters

144

7.1.3 discrete probability distributions

The simplest case is that of a probability distribution function that takes discrete values.
Then, the likelihood of 𝜃 given the data is simply the probability of obtaining the data when
parametrizing the model with parameters 𝜃:

𝐿(𝜃 | 𝐷) = 𝑃(𝑋 = 𝐷 | 𝜃)

Finding the m.l.e. of 𝜃 simply means finding the value(s) maximizing the probability of
obtaining the given data under the model. In cases when this likelihood function has a simple
algebraic form, we can find the maximum value using the classic method of taking its derivative
and setting it to zero.

Example. Let’s go back to the binomial example. Based on the data set of 4 heads out
of 10 coin tosses, what is the maximum likelihood estimate of the probability of a head 𝑝?
The range of values of 𝑝 is between 0 and 1, and since we have a functional expression for
𝑃(𝑘 = 4; 𝑛 = 10, 𝑝) (see above) we can plot it using the dbinom() function:

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

n <- 10
k <- 4
pl <- ggplot(data = data.frame(x = 0, y = 0)) + xlim(c(0,1))
like_fun <- function(p) {
lik <- dbinom(k, n, p)
return(lik)

}
pl <- pl + stat_function(fun = like_fun) +
xlab('probability of success (p)') +
ylab('likelihood') +

145

geom_vline(xintercept = 0.4, linetype='dotted', color = 'red')
show(pl)

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00
probability of success (p)

lik
el

ih
oo

d

It’s probably not surprising that the maximum of the likelihood function occurs at 𝑝 = 0.4,
that is the observed fraction of heads! Using the magic of derivatives, we can show that for a
data set with 𝑘 success out of 𝑛 trials, the maximum likelihood value of 𝑝 is ̂𝑝 = 𝑘/𝑛:

𝐿(𝑝 | 𝑛, 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

𝐿′(𝑝|𝑛, 𝑘) = (𝑛
𝑘) [𝑘𝑝𝑘−1(1 − 𝑝)𝑛−𝑘 − (𝑛 − 𝑘)(1 − 𝑝)𝑛−𝑘−1𝑝𝑘]

= (𝑛
𝑘)𝑝𝑘−1(1 − 𝑝)𝑛−𝑘−1 [𝑘(1 − 𝑝) − (𝑛 − 𝑘)𝑝] = 0

𝑘(1 − 𝑝) = (𝑛 − 𝑘)𝑝
̂𝑝 = 𝑘/𝑛

7.1.4 continuous probability distributions

The definition is more complex for continuous variables (because 𝑃(𝑋 = 𝑥; 𝜃) = 0 as there are
infinitely many values…). What is commonly done is to use the density function 𝑓(𝑥; 𝜃) and
considering the probability of obtaining a value 𝑥 ∈ [𝑥𝑗, 𝑥𝑗 + ℎ], where 𝑥𝑗 is our observed data
point, and ℎ is small. Then:

146

𝐿(𝜃 | 𝑥𝑗) = lim
ℎ→0+

1
ℎ ∫

𝑥𝑗+ℎ

𝑥𝑗

𝑓(𝑥; 𝜃)𝑑𝑥 = 𝑓(𝑥𝑗; 𝜃)

Note that, contrary to probabilities, density values can take values greater than 1. As such,
when the dispersion is small, one could end up with values of likelihood greater than 1 (or
positive log-likelihoods). In fact, the likelihood function is proportional to but not necessarily
equal to the probability of generating the data given the parameters: 𝐿(𝜃|𝑋) ∝ 𝑃(𝑋; 𝜃).
Most classical statistical estimations are based on maximizing a likelihood function. For ex-
ample, linear regression estimates of slope and intercept are based on minimizing the sum
of squares, or more generally, the 𝜒-squared statistic. This amounts to maximizing the like-
lihood of the underlying model, which is based on the assumptions of normally distributed
independent residuals.

7.2 Bayesian thinking

We will formalize the process of incorporation of prior knowledge into probabilistic inference by
going back to the notion of conditional probability introduced in week 2. First, if you multiply
both sides of the definition by 𝑃(𝐵), then we obtain the probability of the intersection of
events 𝐴 and 𝐵:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴 | 𝐵)𝑃(𝐵); 𝑃 (𝐴 ∩ 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)

Second, we can partition a sample space into two complementary sets, 𝐴 and ̄𝐴, and then the
set of 𝐵 can be partitioned into two parts, that intersect with 𝐴 and ̄𝐴, respectively, so that
the probability of 𝐵 is

𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(̄𝐴 ∩ 𝐵)

The two formulas together lead to a very important result called the law of total probability:

𝑃(𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | ̄𝐴)𝑃 (̄𝐴)

It may not be clear at first glance why this is useful: after all, we replaced something simple
(𝑃(𝐵)) with something much more complex on the right hand side. You will see how this
formula enables us to calculate quantities that are not otherwise accessible.

Example: Suppose we know that the probability of a patient having a disease is 1% (called
the prevalence of the disease in a population), and the sensitivity and specificity of the test are
both 80%. What is the probability of obtaining a negative test result for a randomly selected

147

patient? Let us call 𝑃(𝐻) = 0.99 the probability of a healthy patient and 𝑃(𝐷) = 0.01 the
probability of a diseased patient. Then:

𝑃(𝑁𝑒𝑔) = 𝑃(𝑁𝑒𝑔 | 𝐻)𝑃(𝐻) + 𝑃(𝑁𝑒𝑔 | 𝐷)𝑃(𝐷) =

= 0.8 × 0.99 + 0.2 × 0.01 = 0.794

7.2.1 Bayes’ formula

Take the first formula in this section, which expresses the probability 𝑃(𝐴∩𝐵) in two different
ways. Since the expressions are equal, we can combine them into one equation, and by dividing
both sides by 𝑃 (𝐵), we obtain what’s known as Bayes’ formula:

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵)

Another version of Bayes’ formula re-writes the denominator using the Law of total probability
above:

𝑃(𝐴 | 𝐵) = 𝑃(𝐵 | 𝐴)𝑃(𝐴)
𝑃(𝐵 | 𝐴)𝑃(𝐴) + 𝑃(𝐵 | ̄𝐴)𝑃 (̄𝐴)

Bayes’ formula gives us the probability of 𝐴 given 𝐵 from probabilities of 𝐵 given 𝐴 and given
−𝐴, and the prior (baseline) probability of 𝑃(𝐴). This is enormously useful when it is easy to
calculate the conditionals one way and not the other. Among its many applications, it com-
putes the effect of a test result with given sensitivity and specificity (conditional probabilities)
on the probability of the hypothesis being true.

7.2.2 positive predictive value

In reality, a doctor doesn’t have the true information about the patient’s health, but rather
the information from the test and hopefully some information about the population where she
is working. Let us assume we know the rate of false positives 𝑃(𝑃𝑜𝑠 | 𝐻) and the rate of false
negatives 𝑃(𝑁𝑒𝑔 | 𝐷), as well as the prevalence of the disease in the whole population 𝑃(𝐷).
Then we can use Bayes’ formula to answer the practical question, if the test result is positive,
what is the probability the patient is actually sick? This is called the positive predictive value
of a test. The deep Bayesian fact is that one cannot make inferences about the health of the
patient after the test without some prior knowledge, specifically the prevalence of the disease
in the population:

𝑃(𝐷 | 𝑃𝑜𝑠) = 𝑃(𝑃𝑜𝑠 | 𝐷)𝑃(𝐷)
𝑃(𝑃𝑜𝑠 | 𝐷)𝑃(𝐷) + 𝑃(𝑃𝑜𝑠 | 𝐻)𝑃(𝐻)

148

Example. Suppose the test has a 0.01 probability of both false positive and false negatives,
and the overall prevalence of the disease in the population 0.02. You may be surprised that
from an epidemiological perspective, a positive result is far from definitive:

𝑃(𝐷 | 𝑃𝑜𝑠) = 0.99 × 0.02
0.99 × 0.02 + 0.01 × 0.98 = 0.67

This is because the disease is so rare, that even though the test is quite accurate, there are
going to be a lot of false positives (about 1/3 of the time) since 98% of the patients are
healthy.

We can also calculate the probability of a patient who tests negative of actually being healthy,
which is called the negative predictive value. In this example, it is far more definitive:

𝑃 (𝐻 | 𝑁𝑒𝑔) = 𝑃(𝑁𝑒𝑔 | 𝐻)𝑃(𝐻)
𝑃(𝑁𝑒𝑔 | 𝐻)𝑃(𝐻) + 𝑃(𝑁𝑒𝑔 | 𝐷)𝑃(𝐷) =

= 0.99 × 0.98
0.99 × 0.98 + 0.01 × 0.02 = 0.9998

This is again because this disease is quite rare in this population, so a negative test result is
almost guaranteed to be correct. In another population, where disease is more prevalent, this
may not be the case.

Figure 7.1: Bayesian hypothesis testing tree with prior probability 0.1

Exercise: Simulate medical testing by rolling dice for a rare disease (1/6 prevalence) and a
common disease (1/2 prevalence), with both sensitivity and specificity of 5/6. Compare the
positive predictive values for the two cases.

149

Figure 7.2: Bayesian hypothesis testing tree with prior probability 0.01

7.2.3 prosecutor’s fallacy

The basic principle of Bayesian thinking is that one cannot interpret the reliability of a result,
e.g. a hypothesis test, without factoring in the prior probability of it being true. This seems
like a commonsensical concept, but it is often neglected when such results are interpreted in
various contexts, which can lead to perilous mistakes.

Here is a scenario called “the prosecutor’s fallacy”. Suppose that a defendant is accused
of a crime, and physical evidence collected at the crime scene matches this person (e.g. a
fingerprint or a DNA sample), but no other evidence exists to connect the defendant to the
crime. The prosecutor calls an expert witness to testify that fewer than one out of a million
randomly chosen people would match this sample. Therefore, she argues, there is overwhelming
probability that the defendant is guilty and less than 1 in a million chance they are innocent.

Do you spot the problem with the argument?

It’s the same fallacy as we saw in the medical testing scenario, or that is portrayed in the
xkcd cartoon above. The prosecutor is conflating the probability of a match (positive result)
given that the person is innocent, and the probability of the person being innocent, given the
match. The probability of the former is one in a million, but we want to know the latter! And
the latter depends on the prior probability of the person committing the crime, which should
have been investigated by the detectives: did the defendant have a conflict with the victim or
have they never met? did he have opportunity to commit the crime, or was he in a different
city at the time? Without this information, it is impossible to decide whether it’s more likely
that the DNA/fingerprint match is a false positive (in a country of 300 million, you can find
300 false matches if everyone is in the database!) or a true positive.

150

7.2.4 reproducibility in science

In 2005 John Ioannidis published a paper entitled “Why most published research findings
are false”. The paper, as you can see by its title, was intended to be provocative, but it is
based solidly on the classic formula of Bayes. The motivation for the paper came from the
observation that too often in modern science, big, splashy studies that were published could
not be reproduced or verified by other researchers. What could be behind this epidemic of
questionable scientific work?

The problem as described by Ioannidis and many others, in a nutshell, is that unthinking
use of traditional hypothesis testing leads to a high probability of false positive results being
published. The paper outlines several ways in which this can occur.

Too often, a hypothesis is tested and if the resultant p-value is less than some arbitrary
threshold (very often 0.05, an absurdly high number), then the results are published. However,
if one is testing a hypothesis with low prior probability, a positive hypothesis test result is very
likely a false positive. Very often, modern biomedical research involves digging through a
large amount of information, like an entire human genome, in search for associations between
different genes and a phenotype, like a disease. It is a priori unlikely that any specific gene is
linked to a given phenotype, because most genes have very specific functions, and are expressed
quite selectively, only at specific times or in specific types of cells. However, publishing such
studies results in splashy headlines (“Scientists find a gene linked to autism!”) and so a lot of
false positive results are reported, only to be refuted later, in much less publicized studies.

Ioannidis performed basic calculations of the probability that a published study is true (that
is, that a positive reported result is a true positive), and how it is affected by pre-study (prior)
probability, number of conducted studies on the same hypothesis, and the level of bias. His
prediction is that for fairly typical scenario (e.g. pre-study probability of 10%, ten groups
working simultaneously, and a reasonable amount of bias) the probability that a published
result is correct is less than 50%. He then followed up with another paper [2] that investigated
49 top-cited medical research publications over a decade, and looked at whether follow-up
studies could replicate the results, and found that a very significant fraction of their findings
could not be replicated or were found to have weaker effects by subsequent investigations.

7.3 Bayesian inference

As an alternative to frequentist and maximum likelihood approaches to modeling biological
data, Bayesian statistics has seen an impressive growth in recent years, due to the improved
computational power.

At the heart of Bayesian inference is an application of Bayes’ theorem: take a model with
parameters 𝜃, and some data 𝐷. Bayes’ theorem gives us a disciplined way to “update” our
belief in the distribution of 𝜃 once we’ve seen the data 𝐷:

151

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124

𝑃(𝜃 | 𝐷) = 𝑃(𝐷 | 𝜃)𝑃 (𝜃)
𝑃 (𝐷)

where:

• 𝑃(𝜃 | 𝐷) is the posterior distribution of 𝜃, i.e., our updated belief in the values of 𝜃.
• 𝑃(𝐷 | 𝜃) is the likelihood function: 𝑃(𝐷𝑋 | 𝜃) = 𝐿(𝜃 | 𝐷).
• 𝑃(𝜃) is the prior distribution, i.e. our belief on the distribution of 𝜃 before seeing the

data.
• 𝑃(𝐷) is called the evidence: 𝑃(𝐷) = ∫ 𝑃(𝐷 | 𝜃)𝑑𝜃 (in practice, this need not to be

calculated).

7.3.1 Example: capture-recapture

There is a well-established method in population ecology of estimating the size of a popu-
lation by repeatedly capturing and tagging a number of individuals and later repeating the
experiment to see how many are recaptured. Suppose that 𝑛 were captured initially and 𝑘
were recaptured later. We assume that the probability 𝑝 of recapturing an individual is the
same for all individuals. Then our likelihood function is once again, based on the binomial
distribution.

𝐿(𝑝 | 𝑘, 𝑛) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘

and our maximum likelihood estimate is ̂𝑝 = 𝑘/𝑛. This allows for estimation of the total
population size to be 𝑃 = 𝑛2/ ̂𝑝, where 𝑛2 is the total number of individuals captured in the
second experiment. There are more sophisticated estimators, but this one is reasonable for
large enough populations.

Let us plot the likelihood as a function of 𝑝 for the case in which 𝑛 = 100 and 𝑘 = 33

library(tidyverse)
n <- 100
m <- 33
pl <- ggplot(data = data.frame(x = 0, y = 0)) + xlim(c(0,1))
likelihood_function <- function(p) {
lik <- choose(n, m) * p^m * (1-p)^(n - m)
divide by the evidence to make into density function
return(lik * (n + 1))

}
pl <- pl + stat_function(fun = likelihood_function)
show(pl)

152

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00

y

Now we choose a prior. For convenience, we choose a Beta distribution, 𝑃(𝑝) = Beta(𝛼, 𝛽) =
𝑝𝛼−1(1−𝑝)𝛽−1

𝐵(𝛼,𝛽) , where 𝐵(𝛼, 𝛽) is the Beta function, 𝐵(𝛼, 𝛽) = ∫1
0 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

Therefore:

𝑃(𝑝 | 𝑚, 𝑛) ∝ 𝐿(𝑝 | 𝑚, 𝑛)𝑃(𝑝)

= ((𝑛
𝑚)𝑝𝑚(1 − 𝑝)𝑛−𝑚) (𝑝𝛼−1(1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽))

∝ 𝑝𝑚+𝛼−1(1 − 𝑝)𝑛−𝑚+𝛽−1

∝ Beta(𝑚 + 𝛼, 𝛽 + 𝑚 − 𝑛)

We can explore the effect of choosing a prior on the posterior. Suppose that in the past we
have seen probabilities close to 50%. Then we could choose a prior Beta(10, 10) (this is what
is called a “strong” or “informative” prior). Let’s see what happens to the posterior:

a strong prior
alpha <- 10
beta <- 10
prior_function <- function(p) dbeta(p, alpha, beta)
posterior_function <- function(p) dbeta(p, alpha + m, beta + n - m)
pl + stat_function(fun = prior_function, colour = "blue") +
stat_function(fun = posterior_function, colour = "red")

153

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00

y

You can see that the posterior “mediates” between the prior and the likelihood curve. When
we use a weak prior, then our posterior will be closer to the likelihood function:

a weak prior
alpha <- 1/2
beta <- 1/2
pl + stat_function(fun = prior_function, colour = "blue") +
stat_function(fun = posterior_function, colour = "red")

154

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00

y

The fact that the posterior depends on the prior is the most controversial aspect of Bayesian
inference. Different schools of thought treat this feature differently (e.g., “Subjective Bayes”
interprets priors as beliefs before seeing the data; “Empirical Bayes” relies on previous exper-
iments or on the data themselves to derive the prior; “Objective Bayes” tries to derive the
least-informative prior given the data). In practice, the larger the data, the cleaner the signal,
the lesser the influence of the prior on the resulting posterior.

7.3.2 MCMC

The type of calculation performed above is feasible only for very simple models, and for
appropriately chosen priors (called “conjugate priors”). For more complex models, we rely
on simulations. In particular, one can use Markov-Chain Monte Carlo (MCMC) to sample
from the posterior distribution of complex models. Very briefly, one builds a Markov-Chain in
which the states represent sets of parameters; parameters are sampled from the prior, and the
probability of moving to one state to another is proportional to the difference in their likelihood.
When the MC converges, then one obtains the posterior distribution of the parameters.

Bayesian inference is used for many complex problems, including phylogenetic tree building
[5].

155

7.4 Reading:

1. Maximum likelihood estimation from scratch

2. Phylogenetic Analysis by Maximum Likelihood

3. Why most published scientific studies are false

4. Contradicted and Initially Stronger Effects in Highly Cited Clinical Research

5. MrBayes

6. Quick and Dirty Tree Building in R

7. Mark and Recapture

156

https://www.r-bloggers.com/maximum-likelihood-estimation-from-scratch/
https://academic.oup.com/mbe/article/24/8/1586/1103731
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124
https://jamanetwork.com/journals/jama/fullarticle/201218
http://nbisweden.github.io/MrBayes/
https://www.molecularecologist.com/2016/02/quick-and-dirty-tree-building-in-r/
https://en.wikipedia.org/wiki/Mark_and_recapture

8 Review of linear algebra

Goals

• Solving linear equations
• Best-fit line through multiple data points
• Concepts of linearity and vector spaces
• Representation of vectors in multiple bases
• Eigenvalues and eigenvectors of matrices

library(tidyverse) # our friend the tidyverse
library(ggfortify)

8.1 Solving multivariate linear equations

Linear algebra is intimately tied to linear equations, that is, to equations where all variables
are multiplied by constant terms and added together. Linear equations with one variable are
easily solved by division, for example:

4𝑥 = 20

is solved by dividing both sides by 4, obtaining the unique solution 𝑥 = 5.

The situation gets more interesting when multiple variables are involved, with multiple equa-
tions, for example:

4𝑥 − 3𝑦 = 5
−𝑥 + 2𝑦 = 10

There are multiple ways to solve this, for example solving one equation for one variable in
terms of the other, then substituting it into the second equation to obtain a one-variable
problem. A more general approach involves writing this problem in terms of a matrix A that
contains the multiplicative constants of 𝑥 and 𝑦 and a vector ⃗𝑏 that contains the right-hand
side constants:

157

A = (4 −3
−1 2) ⃗𝑏 = (5

10) ⃗𝑥 = (𝑥
𝑦)

A ⃗𝑥 = ⃗𝑏

This now looks analogous to the one-variable equation above, which we solved by dividing
both sides by the multiple of 𝑥. The difficulty is that matrix operations are more complicated
than scalar multiplication and division. Matrix multiplication is used in the equation above
to multiply all the coefficients in the matrix by their respective variables, which involves a
relatively complicated procedure in general.

The “division” equivalent is called matrix inversion and it is even more complicated. First, we
need to define the identity matrix, or the equivalent of the number 1 for matrix multiplication.
The identity matrix is defined only for square matrices (equal number of rows and columns),
so a size 𝑛 by 𝑛 identity matrix is define to have all 1s on the diagonal and all zeros on the
off-diagonal:

𝐼 =
⎛⎜⎜⎜⎜
⎝

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎞⎟⎟⎟⎟
⎠

The identity matrix is special because multiplying any other matrix (of compatible size) by it
results in the same exact matrix (this is easy to check on a couple of examples for 2 × 2 or
3 × 3 matrices):

𝐼𝐴 = 𝐴𝐼 = 𝐴
Then for an 𝑛 by 𝑛 matrix 𝐴 its inverse 𝐴−1 is defined to be the matrix multiplication by
which results in the identity matrix, that is:

𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼

Defining the inverse is one task, but calculating it for any given matrix, especially of large
size, is quite laborious. We will not describe the algorithms here, but you can read about
Gauss-Jordan elimination, which is one classic example. One important point is that not all
matrices are invertible, and for some no inverse matrix exists, analogous to zero for real number
division. The difference is that there are infinitely many matrices for which this is the case,
called singular matrices.

In the cases in which the inverse matrix exists, the linear system of equations can be solved
by multiplying both sides by the inverse matrix, like this:

⃗𝑥 = A−1 ⃗𝑏

158

https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix

Example: Take the linear 2 × 2 system of equations of above and solve it using matrix inver-
sion.The R function solve() calculates the inverse and multiplies it by the constant vector
b:

A <- matrix(c(4,-1,-3,2), nrow = 2)
b <- c(5,10)
solve(A,b)

[1] 8 9

8.2 Fitting a line to data

One geometric application of solving multiple linear equations is to find the coefficients of
a line that passes through two points in the 2-dimensional plane (or of a plane that passes
through three points in three-dimensional space, but we won’t go there.) In that case, the
coordinates of the points are the data, and the unknown variables are the parameters slope 𝑚
and intercept 𝑏 of the line that we want to find.

Example: If the data set consists of two points (3, 5), (6, 2), then finding the best fit values
of 𝑚 and 𝑏 means solving the following two equations:

3𝑚 + 𝑏 = 5
6𝑚 + 𝑏 = 2

These equations have a solution for the slope and intercept, which can be calculated in R using
solve() and then plot the line with the parameters from the solution vector beta:

xs <- c(3, 6)
ys <- c(5, 2)
A <- matrix(c(xs[1], xs[2], 1, 1), nrow = 2)
b <- c(ys[1], ys[2])
beta <- solve(A, b)
data1 <- tibble(xs, ys)
ggplot(data = data1) +
aes(x = xs, y = ys) +
geom_point() +
geom_abline(slope = beta[1], intercept = beta[2])

159

2

3

4

5

3 4 5 6
xs

ys

However, a data set with two points is very small and nobody would accept these values as
reasonable estimates. Let us add one more data point, to increase our sample size to three:
(3, 5), (6, 2), (9, 1). How do you find the best fit slope and intercept?

Bad idea: take two points and find a line, that is the slope and the intercept, that passes
through the two. It should be clear why this is a bad idea: we are arbitrarily ignoring some
of the data, while perfectly fitting two points. So how do we use all the data? Let us write
down the equations that a line with slope 𝑚 and intercept 𝑏 have to satisfy in order to fit our
data points:

3𝑚 + 𝑏 = 5
6𝑚 + 𝑏 = 2
9𝑚 + 𝑏 = 1

This system has no exact solution, since there are three equations and only two unknowns. We
need to find 𝑚 and 𝑏 such that they are a “best fit” to the data, not the perfect solution.

8.2.1 Least-squares line

Let us write the equation in matrix form as follows:

160

A = ⎛⎜
⎝

3 1
6 1
9 1

⎞⎟
⎠

⃗𝑏 = ⎛⎜
⎝

5
2
1
⎞⎟
⎠

⃗𝛽 = (𝑚
𝑏)

A ⃗𝛽 = ⃗𝑏

Mathematically, the problem is that one cannot invert a non-square matrix. However, there
is a way of turning the matrix into a square one, by multiplying it by its own transpose (same
matrix with rows and columns reversed):

A𝑇 A ⃗𝛽 = A𝑇 ⃗𝑏
Exercise: Carry out the matrix multiplications to verify that A𝑇 A is a 2 × 2 matrix and A𝑇 ⃗𝑏
is a vector of length 2.

Now we can solve this equation with a square matrix A𝑇 A by multiplying both sides by the
inverse! In general, for an 𝑛-dimensional data set consisting of a bunch of values of 𝑥 and 𝑦,
the process looks like this:

⃗𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑦1
𝑦2
⋮

𝑦𝑛

⎞⎟⎟⎟⎟
⎠

X =
⎛⎜⎜⎜⎜
⎝

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎞⎟⎟⎟⎟
⎠

� = (𝑚
𝑏) 𝛽 = (X𝑇 X)−1X𝑇 ⃗𝑌

Example: Let us see the best-fit line for the 3-point data set above:

xs <- c(3, 6, 9)
ys <- c(5, 2, 1)
A <- matrix(c(xs[1], xs[2], xs[3], 1, 1, 1), nrow = 3)
b <- c(ys[1], ys[2], ys[3])
beta <- solve(t(A) %*% A, t(A) %*% b)
data1 <- tibble(xs, ys)
ggplot(data = data1) +
aes(x = xs, y = ys) +
geom_point() +
geom_abline(slope = beta[1], intercept = beta[2])

161

1

2

3

4

5

4 6 8
xs

ys

Let us use the classic data set of Karl Pearson’s from 1903 containing the height of fathers
and sons, which we will return to next week when we tackle linear regression properly:

require(UsingR)
data("father.son")
pl <- ggplot(data = father.son) +
aes(x = fheight, y = sheight) +
geom_point() +
coord_equal()

pl

162

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

Exercise: Let’s try to find the best fit line to this data set (the hard way) using the same
process as above for the three - point data set:

Of course, R can do this calculation for you with just one command:

best_beta_easy <- lm(sheight ~ fheight, data = father.son)
best_beta_easy

Call:
lm(formula = sheight ~ fheight, data = father.son)

Coefficients:
(Intercept) fheight

33.8866 0.5141

But it feels good to know that this is not black magic! In fact, plotting it on top of the data
does not even require computing the coefficients:

pl + geom_smooth(method = "lm") # lm stands for linear model

`geom_smooth()` using formula = 'y ~ x'

163

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

8.3 Linearity and vector spaces

We have dealt with linear models in various guises, so now would be a good time to define
properly what linearity means. The word comes from the shape of graphs of linear functions of
one variable, e.g. 𝑓(𝑥) = 𝑎𝑥 + 𝑏, but the algebraic meaning rests on the following two general
properties:

Definition. A linear transformation or linear operator is a mapping 𝐿 between two sets of
vectors with the following properties:

1. (scalar multiplication) 𝐿(𝑐 ⃗𝑣) = 𝑐𝐿(⃗𝑣); where 𝑐 is a scalar and ⃗𝑣 is a vector
2. (additive) 𝐿(⃗𝑣1 + ⃗𝑣2) = 𝐿(⃗𝑣1) + 𝐿(⃗𝑣2); where ⃗𝑣1 and ⃗𝑣2 are vectors

Here we have two types of objects: vectors and transformations/operators that act on those
vectors. The basic example of this are vectors and matrices, because a matrix multiplied by
a vector (on the right) results another vector, provided the number of columns in the matrix
is the same as the number of rows in the vector. This can be interpreted as the matrix
transforming the vector ⃗𝑣 into another one: 𝐴 × ⃗𝑣 = �⃗�.

Example: Let us multiply the following matrix and vector (specially chosen to make a
point):

164

A <- matrix(c(2, 2, 1, 3), nrow = 2)
vec1 <- c(1, -1)
vec2 <- A %*% vec1
print(vec1)

[1] 1 -1

print(vec2)

[,1]
[1,] 1
[2,] -1

We see that this particular vector (1, −1) is unchanged when multiplied by this matrix, or we
can say that the matrix multiplication is equivalent to multiplication by 1. Here is another
such vector for the same matrix:

vec1 <- c(1, 2)
vec2 <- A %*% vec1
print(vec1)

[1] 1 2

print(vec2)

[,1]
[1,] 4
[2,] 8

In this case, the vector is changed, but only by multiplication by a constant (4). Thus the
geometric direction of the vector remained unchanged.

The notion of linearity leads to the important idea of combining different vectors:

Definition: A linear combination of 𝑛 vectors { ⃗𝑣𝑖} is a weighted sum of these vectors with
any real numbers {𝑎𝑖}:

𝑎1 ⃗𝑣1 + 𝑎2 ⃗𝑣2... + 𝑎𝑛 ⃗𝑣𝑛

165

Linear combinations arise naturally from the notion of linearity, combining the additive prop-
erty and the scalar multiplication property. Speaking intuitively, a linear combination of
vectors produces a new vector that is related to the original set. Linear combinations give a
simple way of generating new vectors, and thus invite the following definition for a collection
of vectors closed under linear combinations:

Definition. A vector space is a collection of vectors such that a linear combination of any 𝑛
vectors is contained in the vector space.

The most common examples are the spaces of all real-valued vectors of dimension 𝑛, which are
denoted by ℝ𝑛. For instance, ℝ2 (pronounced “r two”) is the vector space of two dimensional
real-valued vectors such as (1, 3) and (𝜋, −

√
17); similarly, ℝ3 is the vector space consisting

of three dimensional real-valued vectors such as (0.1, 0, −5.6). You can convince yourself, by
taking linear combinations of vectors, that these vector spaces contain all the points in the
usual Euclidean plane and three-dimensional space. The real number line can also be thought
of as the vector space ℝ1.

8.3.1 Linear independence and basis vectors

How can we describe a vector space without trying to list all of its elements? We know that
one can generate an element by taking linear combinations of vectors. It turns out that it is
possible to generate (or “span”) a vector space by taking linear combinations of a subset of its
vectors. The challenge is to find a minimal subset of subset that is not redundant. In order
to do this, we first introduce a new concept:

Definition: A set of vectors { ⃗𝑣𝑖} is called linearly independent if the only linear combination
involving them that equals the zero vector is if all the coefficients are zero. (𝑎1 ⃗𝑣1 + 𝑎2 ⃗𝑣2 +
... + 𝑎𝑛 ⃗𝑣𝑛 = 0 only if 𝑎𝑖 = 0 for all 𝑖.)
In the familiar Euclidean spaces, e.g. ℝ2, linear independence has a geometric meaning: two
vectors are linearly independent if the segments from the origin to the endpoint do not lie
on the same line. But it can be shown that any set of three vectors in the plane is linearly
dependent, because there are only two dimensions in the vector space. This brings us to the
key definition of this section:

Definition: A basis of a vector space is a linearly independent set of vectors that generate
(or span) the vector space. The number of vectors (cardinality) in such a set is called the
dimension of the vector space.

A vector space generally has many possible bases, as illustrated in figure. In the case of ℝ2,
the usual (canonical) basis set is {(1, 0); (0, 1)} which obviously generates any point on the
plane and is linearly independent. But any two linearly independent vectors can generate any
vector in the plane.

166

Example: The vector ⃗𝑟 = (2, 1) can be represented as a linear combination of the two
canonical vectors: ⃗𝑟 = 2×(1, 0)+1×(0, 1). Let us choose another basis set, say {(1, 1); (−1, 1)}
(this is the canonical basis vectors rotated by 𝜋/2.) The same vector can be represented by a
linear combination of these two vectors, with coefficients 1.5 and −0.5: ⃗𝑟 = 1.5 × (1, 1) − 0.5 ×
(−1, 1). If we call the first basis 𝐶 for canonical and the second basis 𝐷 for different, we can
write the same vector using different sets of coordinates for each basis:

⃗𝑟𝐶 = (2, 1); ⃗𝑟𝐷 = (1.5, −0.5)

8.3.2 Projections and changes of basis

The representation of an arbitrary vector (point) in a vector space as a linear combination of
a given basis set is called the decomposition of the point in terms of the basis, which gives the
coordinates for the vector in terms of each basis vector. The decomposition of a point in terms
of a particular basis is very useful in high-dimensional spaces, where a clever choice of a basis
can allow a description of a set of points (such as a data set) in terms of contributions of only
a few basis vectors, if the data set primarily extends only in a few dimensions.

To obtain the coefficients of the basis vectors in a decomposition of a vector ⃗𝑟, we need to
perform what is termed a projection of the vector onto the basis vectors. Think of shining a
light perpendicular to the basis vector, and measuring the length of the shadow cast by the
vector ⃗𝑟 onto ⃗𝑣𝑖. If the vectors are parallel, the shadow is equal to the length of ⃗𝑟; if they are
orthogonal, the shadow is nonexistent. To find the length of the shadow, use the inner product
of ⃗𝑟 and ⃗𝑣, which as you recall corresponds to the cosine of the angle between the two vectors
multiplied by their norms: ⟨ ⃗𝑟, ⃗𝑣⟩ = | ⃗𝑟|| ⃗𝑣| cos(𝜃). We do not care about the length of the vector
⃗𝑣 we are projecting onto, thus we divide the inner product by the square norm of ⃗𝑣, and then

multiply the vector ⃗𝑣 by this projection coefficient:

𝑃𝑟𝑜𝑗(⃗𝑟; ⃗𝑣) = ⟨ ⃗𝑟, ⃗𝑣⟩
⟨ ⃗𝑣, ⃗𝑣⟩ ⃗𝑣 = ⟨ ⃗𝑟, ⃗𝑣⟩

| ⃗𝑣|2 ⃗𝑣 = | ⃗𝑟| cos(𝜃)
| ⃗𝑣| ⃗𝑣

This formula gives the projection of the vector ⃗𝑟 onto ⃗𝑣, the result is a new vector in the
direction of ⃗𝑣, with the scalar coefficient 𝑎 = ⟨ ⃗𝑟, ⃗𝑣⟩/| ⃗𝑣|2.

Example: Here is how one might calculate the projection of the point (2, 1) onto the basis
set {(1, 1); (−1, 1)}:

v1 <- c(1, 1)
v2 <- c(-1, 1)
u <- c(2, 1)
ProjMat <- matrix(cbind(v1, v2),

byrow = T, nrow = 2)

167

print(ProjMat)

[,1] [,2]
[1,] 1 1
[2,] -1 1

ProjMat %*% u

[,1]
[1,] 3
[2,] -1

This is not quite right: the projection coefficients are off by a factor of two compared to the
correct values in the example above. This is because we have neglected to normalize the basis
vectors, so we should modify the script as follows:

v1 <- c(1, 1)
v1 <- v1 / (sum(v1^2))
v2 <- c(-1, 1)
v2 <- v2 / (sum(v2^2))
u <- c(2, 1)
ProjMat <- matrix(cbind(v1, v2),

byrow = T, nrow = 2)
print(ProjMat)

[,1] [,2]
[1,] 0.5 0.5
[2,] -0.5 0.5

print(ProjMat %*% u)

[,1]
[1,] 1.5
[2,] -0.5

This is an example of how to convert a vector/point from representation in one basis set to
another. The new basis vectors, expressed in the original basis set, are arranged in a matrix
by row, scaled by their norm squared, and multiplied by the vector that one wants to express
in the new basis. The resulting vector contains the coordinates in the new basis.

168

8.4 Matrices as linear operators

8.4.1 Matrices transform vectors

In this section we will learn to characterize square matrices by finding special numbers and
vectors associated with them. At the core of this analysis lies the concept of a matrix as an
operator that transforms vectors by multiplication. To be clear, in this section we take as
default that the matrices 𝐴 are square, and that vectors ⃗𝑣 are column vectors, and thus will
multiply the matrix on the right: 𝐴 × ⃗𝑣.

A matrix multiplied by a vector produces another vector, provided the number of columns
in the matrix is the same as the number of rows in the vector. This can be interpreted as
the matrix transforming the vector ⃗𝑣 into another one: 𝐴 × ⃗𝑣 = �⃗�. The resultant vector �⃗�
may or may not resemble ⃗𝑣, but there are special vectors for which the transformation is very
simple.

Example. Let us multiply the following matrix and vector (specially chosen to make a
point):

(2 1
2 3) (1

−1) = (2 − 1
2 − 3) = (1

−1)

We see that this particular vector is unchanged when multiplied by this matrix, or we can say
that the matrix multiplication is equivalent to multiplication by 1. Here is another such vector
for the same matrix:

(2 1
2 3) (1

2) = (2 + 2
2 + 6) = (4

8)

In this case, the vector is changed, but only by multiplication by a constant (4). Thus the
geometric direction of the vector remained unchanged.

Generally, a square matrix has an associated set of vectors for which multiplication by the
matrix is equivalent to multiplication by a constant. This can be written down as a definition:

Definition. An eigenvector of a square matrix 𝐴 is a vector ⃗𝑣 for which matrix multiplication
by 𝐴 is equivalent to multiplication by a constant. This constant 𝜆 is called its eigenvalue
of 𝐴 corresponding the the eigenvector ⃗𝑣. The relationship is summarized in the following
equation:

𝐴 × ⃗𝑣 = 𝜆 ⃗𝑣

Note that this equation combines a matrix (𝐴), a vector (⃗𝑣) and a scalar 𝜆, and that both
sides of the equation are column vectors.

169

The definition does not specify how many such eigenvectors and eigenvalues can exist for a
given matrix 𝐴. There are usually as many such vectors ⃗𝑣 and corresponding numbers 𝜆 as the
number of rows or columns of the square matrix 𝐴, so a 2 by 2 matrix has two eigenvectors
and two eigenvalues, a 5x5 matrix has 5 of each, etc. One ironclad rule is that there cannot be
more distinct eigenvalues than the matrix dimension. Some matrices possess fewer eigenvalues
than the matrix dimension, those are said to have a degenerate set of eigenvalues, and at least
two of the eigenvectors share the same eigenvalue.

The situation with eigenvectors is trickier. There are some matrices for which any vector is
an eigenvector, and others which have a limited set of eigenvectors. What is difficult about
counting eigenvectors is that an eigenvector is still an eigenvector when multiplied by a constant.
You can show that for any matrix, multiplication by a constant is commutative: 𝑐𝐴 = 𝐴𝑐,
where 𝐴 is a matrix and 𝑐 is a constant. This leads us to the important result that if ⃗𝑣 is an
eigenvector with eigenvalue 𝜆, then any scalar multiple 𝑐 ⃗𝑣 is also an eigenvector with the same
eigenvalue. The following demonstrates this algebraically:

𝐴 × (𝑐 ⃗𝑣) = 𝑐𝐴 × ⃗𝑣 = 𝑐𝜆 ⃗𝑣 = 𝜆(𝑐 ⃗𝑣)

This shows that when the vector 𝑐 ⃗𝑣 is multiplied by the matrix 𝐴, it results in its being
multiplied by the same number 𝜆, so by definition it is an eigenvector. Therefore, an eigenvector
⃗𝑣 is not unique, as any constant multiple 𝑐 ⃗𝑣 is also an eigenvector. It is more useful to think

not of a single eigenvector ⃗𝑣, but of a collection of vectors that can be inter-converted
by scalar multiplication that are all essentially the same eigenvector. Another way to
represent this, if the eigenvector is real, is that an eigenvector as a direction that remains
unchanged by multiplication by the matrix, such as direction of the vector 𝑣 in the
figure below. As mentioned above, this is true only for real eigenvalues and eigenvectors, since
complex eigenvectors cannot be used to define a direction in a real space.

To summarize, eigenvalues and eigenvectors of a matrix are a set of numbers and a set of vectors
(up to scalar multiple) that describe the action of the matrix as a multiplicative operator on
vectors. “Well-behaved” square 𝑛 × 𝑛 matrices have 𝑛 distinct eigenvalues and 𝑛 eigenvectors
pointing in distinct directions. In a deep sense, the collection of eigenvectors and eigenvalues
defines a matrix 𝐴, which is why an older name for them is characteristic vectors and values.

8.4.2 calculating eigenvalues

Finding the eigenvalues and eigenvectors analytically, that is on paper, is quite laborious
even for 3 by 3 or 4 by 4 matrices and for larger ones there is no analytical solution. In
practice, the task is outsourced to a computer, and MATLAB has a number of functions for
this purpose. Nevertheless, it is useful to go through the process in 2 dimensions in order to
gain an understanding of what is involved. From the definition of eigenvalues and eigenvectors,
the condition can be written in terms of the four elements of a 2 by 2 matrix:

170

Figure 8.1: Illustration of the geometry of a matrix 𝐴 multiplying its eigenvector 𝑣, resulting
in a vector in the same direction 𝜆𝑣

171

(𝑎 𝑏
𝑐 𝑑) (𝑣1

𝑣2
) = (𝑎𝑣1 + 𝑏𝑣2

𝑐𝑣1 + 𝑑𝑣2
) = 𝜆 (𝑣1

𝑣2
)

This is now a system of two linear algebraic equations, which we can solve by substitution.
First, let us solve for 𝑣1 in the first row, to get

𝑣1 = −𝑏𝑣2
𝑎 − 𝜆

Then we substitute this into the second equation and get:

−𝑏𝑐𝑣2
𝑎 − 𝜆 + (𝑑 − 𝜆)𝑣2 = 0

Since 𝑣2 multiplies both terms, and is not necessarily zero, we require that its multiplicative
factor be zero. Doing a little algebra, we obtain the following, known as the characteristic
equation of the matrix:

−𝑏𝑐 + (𝑎 − 𝜆)(𝑑 − 𝜆) = 𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 0

This equation can be simplified by using two quantities we defined at the beginning of the
section: the sum of the diagonal elements called the trace 𝜏 = 𝑎 + 𝑑, and the determinant
Δ = 𝑎𝑑 − 𝑏𝑐. The quadratic equation has two solutions, dependent solely on 𝜏 and Δ:

𝜆 = 𝜏 ±
√

𝜏2 − 4Δ
2

This is the general expression for a 2 by 2 matrix, showing there are two possible eigenvalues.
Note that if 𝜏2 − 4Δ > 0, the eigenvalues are real, if 𝜏2 − 4Δ < 0, they are complex (have
real and imaginary parts), and if 𝜏2 − 4Δ = 0, there is only one eigenvalue. This situation is
known as degenerate, because two eigenvectors share the same eigenvalue.

Example. Let us take the same matrix we looked at in the previous subsection:

𝐴 = (2 1
2 3)

The trace of this matrix is 𝜏 = 2 + 3 = 5 and the determinant is Δ = 6 − 2 = 4. Then by our
formula, the eigenvalues are:

𝜆 = 5 ±
√

52 − 4 × 4
2 = 5 ± 3

2 = 4, 1

172

These are the multiples we found in the example above, as expected. Of course R has functions
to calculate this instead of doing this by hand:

A <- matrix(c(2, 2, 1, 3), nrow =2)
eigs <- eigen(A)
eigs$values

[1] 4 1

eigs$vectors

[,1] [,2]
[1,] -0.4472136 -0.7071068
[2,] -0.8944272 0.7071068

Note: a real-valued matrix can have complex eigenvalues and eigenvectors, but whenever it
acts on a real vector, the result is still real. This is because the complex numbers cancel each
others imaginary parts.

173

9 Linear models

Learn how to perform linear regression, how to make sure that the assumptions of the model
are not violated, and how to interpret the results.

Note that we need a new library:

library(tidyverse)
library(lindia) # regression diagnostic in ggplot2

9.1 Regression toward the mean

Francis Galton (Darwin’s half-cousin) was a biologist interested in evolution, and one of the
main proponents of eugenics (he coined the term himself). To advance his research program,
he set out to measure several features in human populations, and started trying to explain the
variation he observed, incidentally becoming one of the founding fathers of modern statistics.

In his “Regression towards mediocrity in hereditary stature” he showed an interesting pattern:
children of tall parents tended to be shorter than their parents, while children of short par-
ents tended to be taller than their parents. He called this phenomenon “regression toward
mediocrity” (now called regression toward [to] the mean).

We’re going to explore this phenomenon using Karl Pearson’s (another founding father of
statistics) data from 1903, recording the height of fathers and sons:

require(UsingR)
data("father.son")
pl <- ggplot(data = father.son) + aes(x = fheight, y = sheight) + geom_point() + coord_equal()
pl

174

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

Let’s add the 1:1 line for comparison:

pl + geom_abline(slope = 1, intercept = 0, linetype = 2, color = "red")

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

175

You can see that the sons tend to be taller than their fathers. Let’s see of how much:

mean(father.son$fheight)

[1] 67.6871

mean(father.son$sheight)

[1] 68.68407

difference
mean(father.son$sheight) - mean(father.son$fheight)

[1] 0.9969728

So let’s add a line with an intercept of 1:

pl <- pl + geom_abline(slope = 1, intercept = 1, linetype = 2, color = "blue")
pl

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

176

You can see that the line does not divide the cloud of points evenly: even though tall fathers
tend to produce tall sons, and short fathers short sons, the sons of short fathers tend to be
taller than their fathers (for example, look at the sons of fathers less than 60 inches tall), while
the sons of tall fathers tend to be shorter than their fathers (for example, the sons of fathers
taller than 75 inches).

This phenomenon is called “regression toward the mean”: when you take two measurement on
the same sample (or related samples, as here), if a variable is extreme on its first measurement,
it will tend to be closer to the average on its second measurement; if it is extreme on its second
measurement, it will tend to have been closer to the average on its first.

Regression to the mean: dangers of interpretation

• A city sees an unusual growth of crime in a given neighborhood, and they decide to
patrol the neighborhood more heavily. The next year, crime rates are close to normal.
Was this due to heavy presence of police?

• A teacher sees that scolding students who’ve had a very low score in a test makes them
perform better in the next test. (But would praising those with unusually high scores
lead to slacking off in the next test?)

• A huge problem in science: effect sizes tend to decrease through time. Problem of
selective reporting?

This phenomenon gave the name to one of the simplest statistical models: the linear regres-
sion.

9.2 Finding the best fitting line: Linear Regression

How can we explain the relationship between the height of the fathers and those of their sons?
One of the simplest models we can use is called a “Linear Model”. Basically, we want to express
the height of the son as a function of the height of the father:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

where 𝑦𝑖 is the height of the son (response variable), 𝑥𝑖 is the height of the father
(explanatory variable), 𝛽0 and 𝛽1 are two numbers (intercept and slope of the line) that
do not vary within the population (these are the parameters we want to fit). Finally, the
term 𝜖𝑖 measures the “error” we are making for the 𝑖𝑡ℎ son. For simplicity, we assume the
𝜖𝑖

iid∼ 𝒩(0, 𝜎2) (and 𝜎 is therefore another parameter we want to fit).

When we have multiple explanatory variables (for example, if we had recorded also the height
of the mother, whether the son was born at full term or premature, the average caloric intake
for the family, etc.), we speak of Multiple Linear Regression:

177

𝑦𝑖 = 𝛽0 +
𝑛

∑
𝑘=1

𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖

9.2.1 Solving a linear model — some linear algebra

In this section, we’re going to look at the mechanics of linear regression. Suppose that for
simplicity we have a single explanatory variable, then we can write the linear model in compact
form as:

Y = X� + �

where:

Y =
⎛⎜⎜⎜⎜
⎝

𝑦1
𝑦2
⋮

𝑦𝑛

⎞⎟⎟⎟⎟
⎠

X =
⎛⎜⎜⎜⎜
⎝

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎞⎟⎟⎟⎟
⎠

� = (𝛽0
𝛽1

) � =
⎛⎜⎜⎜⎜
⎝

𝜖1
𝜖2
⋮

𝜖𝑛

⎞⎟⎟⎟⎟
⎠

Solving the linear regression means finding the best-fitting 𝛽0, 𝛽1 and 𝜎 (controlling the spread
of the distribution of the 𝜖𝑖). Our goal is to find the values of 𝛽 that minimize 𝜎 (meaning
that the points fall closer to the line). Rearranging:

∑
𝑖

𝜖2
𝑖 = ∑

𝑖
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2 = ‖Y − X�‖

As such, we want to find the vector 𝛽 that minimizes the norm ‖Y − X�‖. One can prove that
this is accomplished using:

̂� = (X𝑇 X)−1 X𝑇 Y

Where the matrix (X𝑇 X)−1 X𝑇 is known as the (left) Moore-Penrose pseudo-inverse of X.
Let’s try to do this in R (the “hard” way):

X <- cbind(1, father.son$fheight)
Y <- cbind(father.son$sheight)
best_beta <- solve(t(X) %*% X) %*% t(X) %*% Y
best_beta

178

[,1]
[1,] 33.886604
[2,] 0.514093

We find that the best fitting line has an intercept of about 34 inches, and a slope of 0.51. Of
course, R can do this calculation for you with just one command:

best_beta_easy <- lm(sheight ~ fheight, data = father.son)
best_beta_easy

Call:
lm(formula = sheight ~ fheight, data = father.son)

Coefficients:
(Intercept) fheight

33.8866 0.5141

But it feels good to know that this is not black magic! In fact, plotting it on top of the data
does not even require computing the coefficients:

pl + geom_smooth(method = "lm") # lm stands for linear model

60

65

70

75

60 65 70 75
fheight

sh
ei

gh
t

179

9.2.2 Minimizing the sum of squares

What we just did is called “ordinary least-squares”: we are trying to minimize the distance from
the data points to their projection on the best-fitting line. We can compute the “predicted”
heights as:

Ŷ = X ̂�

Then, we’re minimizing ‖Y − Ŷ‖. We call ̂� = Y − Ŷ the vector of residuals. From this, we
can estimate the final parameter, 𝜎:

𝜎 = √∑𝑖 ̂𝜖𝑖
2

𝑛 − 𝑝

where 𝑛 is the number of data points, and 𝑝 is the number of parameters in � (2 in this case);
this measures the number of degrees of freedom. Let’s try to compute it:

degrees_of_freedom <- length(Y) - 2
degrees_of_freedom

[1] 1076

epsilon_hat <- X %*% best_beta - Y
sigma <- sqrt(sum(epsilon_hat^2) / degrees_of_freedom)
sigma

[1] 2.436556

In R, you will find this reported as the Residual standard error when you call summary on
your model:

summary(best_beta_easy)

Call:
lm(formula = sheight ~ fheight, data = father.son)

Residuals:

180

Min 1Q Median 3Q Max
-8.8772 -1.5144 -0.0079 1.6285 8.9685

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.88660 1.83235 18.49 <2e-16 ***
fheight 0.51409 0.02705 19.01 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506
F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e-16

Finally, the coefficient of determination 𝑅2 is computed as:

𝑅2 = ∑𝑖(̂𝑦𝑖 − ̄𝑦)2

∑𝑖(𝑦𝑖 − ̄𝑦)2

where ̄𝑦 is the mean of 𝑦𝑖. If the regression has an intercept, then the 𝑅2 can vary between
0 and 1, with values close to 1 indicating a good fit to the data. Again, let’s compute it the
hard way and then the easy way:

y_bar <- mean(Y)
R_2 <- sum((X %*% best_beta - y_bar)^2) / sum((Y - y_bar)^2)
R_2

[1] 0.2513401

look for Multiple R-squared:
summary(best_beta_easy)

Call:
lm(formula = sheight ~ fheight, data = father.son)

Residuals:
Min 1Q Median 3Q Max

-8.8772 -1.5144 -0.0079 1.6285 8.9685

181

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.88660 1.83235 18.49 <2e-16 ***
fheight 0.51409 0.02705 19.01 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.437 on 1076 degrees of freedom
Multiple R-squared: 0.2513, Adjusted R-squared: 0.2506
F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e-16

9.2.3 Assumptions of linear regression

In practice, when we are performing a linear regression, we are making a number of assumptions
about the data. Here are the main ones:

• Model structure: we assume that the process generating the data is linear.
• Explanatory variable: we assume that this is measured without errors (!).
• Residuals: we assume that residuals are i.i.d. Normal.
• Strict exogeneity: the residuals should have conditional mean of 0.

𝔼[𝜖𝑖|𝑥𝑖] = 0

• No linear dependence: the columns of X should be linearly independent.
• Homoscedasticity: the variance of the residuals is independent of 𝑥𝑖.

𝕍[𝜖𝑖|𝑥𝑖] = 𝜎2

• Errors are uncorrelated between observations.

𝔼[𝜖𝑖𝜖𝑗|𝑥] = 0 ∀𝑗 ≠ 𝑖

9.3 Linear regression in action

To perform a slightly more complicated linear regression, we take the data from:

Piwowar HA, Day RS, Fridsma DB (2007) Sharing detailed research data is asso-
ciated with increased citation rate. PLoS ONE 2(3): e308.

182

https://doi.org/10.1371/journal.pone.0000308
https://doi.org/10.1371/journal.pone.0000308

The authors set out to demonstrate that sharing data accompanying papers tends to increase
the number of citations received by the paper.

original URL
https://datadryad.org/stash/dataset/doi:10.5061/dryad.j2c4g
dat <- read_csv("data/Piwowar_2011.csv")
rename variables for easier handling
dat <- dat %>% rename(IF = `Impact factor of journal`,

NCIT = `Number of Citations in first 24 months after publication`,
SHARE = `Is the microarray data publicly available`) %>%

dplyr::select(NCIT, IF, SHARE)

First, let’s run a model in which the logarithm of the number of citations + 1 is regressed
against the “Impact Factor” of the journal (which is a measure of “prestige” based on the
average number of citations per paper received):

my_model <- lm(log(NCIT + 1) ~ log(IF + 1), data = dat)
summary(my_model)

Call:
lm(formula = log(NCIT + 1) ~ log(IF + 1), data = dat)

Residuals:
Min 1Q Median 3Q Max

-1.65443 -0.44272 -0.00769 0.43414 1.62817

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1046 0.2951 0.355 0.724
log(IF + 1) 1.2920 0.1196 10.802 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6887 on 83 degrees of freedom
Multiple R-squared: 0.5844, Adjusted R-squared: 0.5794
F-statistic: 116.7 on 1 and 83 DF, p-value: < 2.2e-16

You can see that the higher the impact factor, the higher the number of citations received
(unsurprisingly!). Now let’s add another variable, detailing whether publicly available data
accompany the paper:

183

my_model2 <- lm(log(NCIT + 1) ~ log(IF + 1) + SHARE, data = dat)
summary(my_model2)

Call:
lm(formula = log(NCIT + 1) ~ log(IF + 1) + SHARE, data = dat)

Residuals:
Min 1Q Median 3Q Max

-1.98741 -0.43768 0.08726 0.41847 1.35634

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4839 0.3073 1.575 0.11918
log(IF + 1) 1.0215 0.1442 7.084 4.4e-10 ***
SHARE 0.5519 0.1802 3.062 0.00297 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6564 on 82 degrees of freedom
Multiple R-squared: 0.627, Adjusted R-squared: 0.6179
F-statistic: 68.92 on 2 and 82 DF, p-value: < 2.2e-16

We find that sharing data is associated with a larger number of citations.

9.4 A regression gone wild

Even when the fit is good, and assumptions are met, one can still end up with a fantastic
blunder. To show this, we are going to repeat a study published in Nature (no less!) by Tatem
et al. You can find the study here. Briefly, the Authors gathered data on the 100m sprint at
the Olympics from 1900 to 2004, for both men and women. We can do the same:

olympics <- read_csv("data/100m_dash.csv")

Then, they fitted a linear regression through the points, for both men and women. So far, so
good:

ggplot(data = olympics %>% filter(Year > 1899, Year < 2005)) +
aes(x = Year, y = Result, colour = Gender) +
geom_point() + geom_smooth(method = "lm")

184

https://www.nature.com/articles/431525a

10.0

10.5

11.0

11.5

12.0

1920 1950 1980
Year

R
es

ul
t Gender

M

W

The fit is quite good:

summary(lm(Result ~ Year*Gender,
data = olympics %>% filter(Year > 1899, Year < 2005)))

Call:
lm(formula = Result ~ Year * Gender, data = olympics %>% filter(Year >

1899, Year < 2005))

Residuals:
Min 1Q Median 3Q Max

-0.38617 -0.05428 -0.00071 0.08239 0.32174

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.808278 2.179491 14.594 < 2e-16 ***
Year -0.010997 0.001116 -9.855 1.24e-11 ***
GenderW 10.952646 4.371678 2.505 0.0170 *
Year:GenderW -0.005011 0.002228 -2.249 0.0309 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

185

Residual standard error: 0.1707 on 35 degrees of freedom
Multiple R-squared: 0.9304, Adjusted R-squared: 0.9244
F-statistic: 155.9 on 3 and 35 DF, p-value: < 2.2e-16

An 𝑅2 of 0.93, the pinnacle of a good linear regression. Now however, comes the problem.
The Authors noticed that the times recorded for women are falling faster than those for men,
meaning that the gender gap is reducing. Will it ever disappear? Just extend the regression
and project forward:

ggplot(data = olympics %>% filter(Year > 1899, Year < 2005)) +
aes(x = Year, y = Result, colour = Gender) +
geom_point() + geom_smooth(method = "lm", fullrange = TRUE, se = FALSE) +
xlim(c(1890, 2200)) + ylim(c(0, 13))

0

5

10

1900 2000 2100 2200
Year

R
es

ul
t Gender

M

W

You can see that the lines are touching in sometimes before 2200! Then women will overrun
men.

There are a number of things that are wrong with this result. First, by the same logic,
computers will soon go faster than the speed of light, the number of people on planet Earth
will be in the hundreds of billions, and the price of sequencing will drop so much that we will
be paid instead of paying to get our samples sequenced…

Second, if we extend backwards, rather than forward, we would find that Roman women
would take more than a minute to run 100m (possibly, because of the uncomfortable tunics

186

and sandals…).

ggplot(data = olympics %>% filter(Year > 1899, Year < 2005)) +
aes(x = Year, y = Result, colour = Gender) +
geom_point() + geom_smooth(method = "lm", fullrange = TRUE, se = FALSE) +
xlim(c(-2000, 2200)) + ylim(c(0, 75))

0

20

40

60

−2000 −1000 0 1000 2000
Year

R
es

ul
t Gender

M

W

As Neil Bohr allegedly said (but this is disputed), “Prediction is very difficult, especially about
the future”. The fact is that any non-linear curve looks quite linear if we are only considering
a small range of values on the x-axis. To prove this point, let’s add the data from 2004 to
today:

ggplot(data = olympics %>% filter(Year > 1899)) +
aes(x = Year, y = Result, colour = Gender) +
geom_point() + geom_smooth(method = "lm", fullrange = TRUE, se = FALSE) +
xlim(c(1890, 2400)) + ylim(c(0, 13))

187

0

5

10

1900 2000 2100 2200 2300 2400
Year

R
es

ul
t Gender

M

W

You can see that the process has already slowed down: now it would take an extra century
before the “momentous sprint”.

So many things were wrong with this short paper, that Nature was showered with replies. My
favorite is from a Cambridge statistician (the Authors were from Oxford, ça va sans dire); it
is perfectly short and venomous—a good candidate for the Nobel prize in Literature!

Sir — A. J. Tatem and colleagues calculate that women may outsprint men by
the middle of the twenty-second century (Nature 431, 525; 2004). They omit to
mention, however, that (according to their analysis) a far more interesting race
should occur in about 2636, when times of less than zero seconds will be recorded.
In the intervening 600 years, the authors may wish to address the obvious challenges
raised for both time-keeping and the teaching of basic statistics. — Kenneth Rice

9.5 More advanced topics

9.5.1 Categorical variables in linear models

In the example above, we have built the model:

log(NCIT + 1) = 𝛽0 + 𝛽1(log(IF + 1))𝑖 + 𝛽2(SHARE)𝑖 + 𝜖𝑖

188

In this case, the variable SHARE takes values of 1 or 0. As such, when the data were not
shared (SHARE = 0) the model reduces to the previous one, in which 𝛽2 was absent. The
coefficient 𝛽2 measures the increase in the log of citation count when data are shared.

The same approach can be taken whenever you have categorical values: R will automatically
create dummy variables each encoding whether the ith data point belongs to a particular
category. For example, suppose you want to predict the height of a child based on the height
of the father, and that you also collected the gender, in three categories: F for female, M for
male, U for unknown. Then you could use this information to build the model:

height𝑖 = 𝛽0 + 𝛽1(height of father)𝑖 + 𝛽2(gender is M)𝑖 + 𝛽3(gender is U)𝑖 + 𝜖𝑖

where the variable gender is M takes value 1 when the gender is M and 0 otherwise, and
gender is U takes value 1 when the gender is unknown and 0 otherwise. As such, when the
gender is F both variables will be zero, and 𝛽2 and 𝛽3 measure the increase (or decrease) in
height for males and those with unspecified gender, respectively. While R does this for you
automatically, understanding what is going on “under the hood” is essential for interpreting
the results.

9.5.2 Interactions in linear models

Sometimes we think that our explanatory variables could “interact”. For example, suppose
you want to predict the BMI of people. What we have available is the average caloric intake,
the height, gender, and whether they are vegetarian, vegan, or omnivores. A simple model
could be:

BMI𝑖 = 𝛽0 + 𝛽ℎheight𝑖 + 𝛽𝑐calories𝑖 + 𝛽𝑔gender𝑖 + 𝜖𝑖

We could add the type of diet as a factor:

BMI𝑖 = 𝛽0 + 𝛽ℎheight𝑖 + 𝛽𝑐calories𝑖 + 𝛽𝑔gender𝑖 + 𝛽𝑑diet𝑖 + 𝜖𝑖

However, suppose that we believe the type of diet to affect differentially men and women.
Then, we would like to create an “interaction” (e.g., paleo-female, vegan-male):

BMI𝑖 = 𝛽0 + 𝛽ℎheight𝑖 + 𝛽𝑐calories𝑖 + 𝛽𝑔gender𝑖 + 𝛽𝑑diet𝑖 + 𝛽𝑔𝑑gender:diet𝑖 + 𝜖𝑖

where the colon signals “interaction”. In R, this would be coded as lm(BMI ~ height +
calories + gender * diet). A simpler model is one in which we only account for the
gender:diet interaction, but not for the separate effects of gender and diet:

189

BMI𝑖 = 𝛽0 + 𝛽ℎheight𝑖 + 𝛽𝑐calories𝑖 + 𝛽𝑔𝑑gender:diet𝑖 + 𝜖𝑖

which in R can be coded as lm(BMI ~ height + calories + gender:diet). Finally, for
some models you believe the intercept should be 0 (note that this makes the 𝑅2 statistics
uninterpretable!). In R, just put -1 at the end of the definition of the model (e.g., lm(BMI ~
height + calories + gender:diet - 1)).

9.5.3 Regression diagnostics

Now that we know the mechanics of linear regression, we turn to diagnostics: how can we
make sure that the model fits the data “well”? We start by analyzing a data set assembled by
Anscombe (The American Statistician, 1973)

dat <- read_csv("data/Anscombe_1973.csv")

The file comprised four data sets. We perform a linear regression using each data set sepa-
rately:

lm(Y ~ X, data = dat %>% filter(Data_set == "Data_1"))

Call:
lm(formula = Y ~ X, data = dat %>% filter(Data_set == "Data_1"))

Coefficients:
(Intercept) X

3.0001 0.5001

lm(Y ~ X, data = dat %>% filter(Data_set == "Data_2"))

Call:
lm(formula = Y ~ X, data = dat %>% filter(Data_set == "Data_2"))

Coefficients:
(Intercept) X

3.001 0.500

190

lm(Y ~ X, data = dat %>% filter(Data_set == "Data_3"))

Call:
lm(formula = Y ~ X, data = dat %>% filter(Data_set == "Data_3"))

Coefficients:
(Intercept) X

3.0025 0.4997

lm(Y ~ X, data = dat %>% filter(Data_set == "Data_4"))

Call:
lm(formula = Y ~ X, data = dat %>% filter(Data_set == "Data_4"))

Coefficients:
(Intercept) X

3.0017 0.4999

As you can see, each data set is best fit by the same line, with intercept 3 and slope 1
2 . Plotting

the data, however, shows that the situation is more complicated:

ggplot(data = dat) + aes(x = X, y = Y, colour = Data_set) +
geom_point() + geom_smooth(method = "lm", se = FALSE) +
facet_wrap(~Data_set)

191

Data_3 Data_4

Data_1 Data_2

5 10 15 5 10 15

5.0

7.5

10.0

12.5

5.0

7.5

10.0

12.5

X

Y

Data_set

Data_1

Data_2

Data_3

Data_4

Data_1 is fitted quite well; Data_2 shows a marked nonlinearity; all points but one in Data_3
are on the same line, but a single outlier shifts the line considerably; finally, in Data_4 a single
point is responsible for the fitting line: all other values of X are exactly the same. Inspecting
the graphs, we would conclude that we can trust our model only in the first case. When you
are performing a multiple regression, however, it is hard to see whether we’re in case 1, or one
of the other cases. R provides a number of diagnostic tools which can help you decide whether
the fit to the data is good.

9.5.4 Plotting the residuals

The first thing you want to do is to plot the residuals as a function of the fitted values. This
plot should make it apparent whether the data was linear or not. The package lindia (linear
regression diagnostics) makes it easy to produce this type of plot using ggplot2:

gg_resfitted(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_1"))) + geom_smooth(method = "loess")

192

−2

−1

0

1

2

5 6 7 8 9 10
Fitted Values

R
es

id
ua

ls

Residual vs. Fitted Value

What you are looking for is an approximately flat line, meaning that the residuals are approx-
imately normally distributed with mean zero for each fitted value. This is not the case in the
other data sets:

gg_resfitted(lm(Y ~ X, data = dat %>%
filter(Data_set == "Data_2"))) +

geom_smooth(method = "loess")

193

−2

−1

0

1

2

5 6 7 8 9 10
Fitted Values

R
es

id
ua

ls

Residual vs. Fitted Value

gg_resfitted(lm(Y ~ X, data = dat %>%
filter(Data_set == "Data_3"))) +

geom_smooth(method = "loess")

−2.5

0.0

2.5

5 6 7 8 9 10
Fitted Values

R
es

id
ua

ls

Residual vs. Fitted Value

194

gg_resfitted(lm(Y ~ X, data = dat %>%
filter(Data_set == "Data_4"))) +

geom_smooth(method = "loess")

−2

−1

0

1

2

7 8 9 10 11 12
Fitted Values

R
es

id
ua

ls

Residual vs. Fitted Value

9.5.5 Q-Q Plot

We can take this further, and test whether the residuals follow a normal distribution. In
particular, we can estimate the density of the residuals, and plot it against the density of a
normal distribution:

gg_qqplot(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_1")))

195

−2

−1

0

1

2

−1 0 1
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

gg_qqplot(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_2")))

−2

−1

0

1

−1 0 1
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

gg_qqplot(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_3")))

196

−1

0

1

2

3

−1 0 1
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

gg_qqplot(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_4")))

−1

0

1

2

−1 0 1
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

Here, you are looking for a good match to the 1:1 line; outliers will be found far from the line
(e.g., case 3).

197

9.5.6 Cook’s distance

Another way to detect outliers is to compute the Cook’s distance for every point. Briefly, this
statistic measures the effect on the regression we would obtain if we were to remove a point.

gg_cooksd(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_1")))

3

0.0

0.1

0.2

0.3

0.4

0.5

5 10
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

gg_cooksd(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_2")))

198

6 8

0.0

0.2

0.4

0.6

0.8

5 10
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

gg_cooksd(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_3")))

3

0.0

0.5

1.0

5 10
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

gg_cooksd(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_4")))

199

0.00

0.05

0.10

5 10
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

9.5.7 Leverage

Points that strongly influence the regression are said to have much “leverage”:

gg_resleverage(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_1")))

200

−1

0

1

0.10 0.15 0.20 0.25 0.30
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage

gg_resleverage(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_2")))

−2

−1

0

1

0.10 0.15 0.20 0.25 0.30
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage

201

gg_resleverage(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_3")))

−1

0

1

2

3

0.10 0.15 0.20 0.25 0.30
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage

gg_resleverage(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_4")))

−1

0

1

0.25 0.50 0.75 1.00
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage

202

9.5.8 Running all diagnostics

These are but a few of the diagnostics available. To run all diagnostics on a given model, call

gg_diagnose(lm(Y ~ X, data = dat %>% filter(Data_set == "Data_2")))

0.00.51.01.52.0

−2 −1 0 1
Residuals

co
un

t Histogram of Residuals

−2−101
2

4 6 8
Yre

si
du

al
s Residual vs. Y

−2−101
2

6 9 12
Xre

si
du

al
s Residual vs. X

−2−101
2

5 6 7 8 9 10
Fitted ValuesR

es
id

ua
ls Residual vs. Fitted Value

−2−101

−1 0 1
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

−2−101

5 6 7 8 9 10
Fitted Values

S
qr

t (
S

ta
nd

ar
di

ze
d

R
es

id
ua

ls
)

Scale−Location Plot

−2−101

0.10 0.15 0.20 0.25 0.30
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage
6 8

0.00.20.40.60.8

5 10
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

9.6 Transforming the data

Often, one needs to transform the data before running a linear regression, in order to fulfill
the assumptions. We’re going to look at the salary of professors at the University of California
to show how this is done.

read the data
Original URL
dt <- read_csv("https://raw.githubusercontent.com/dailybruin/uc-salaries/master/data/uc_salaries.csv",

col_names = c("first_name", "last_name", "title", "a", "pay", "loc", "year", "b", "c", "d")) %>%
dplyr::select(first_name, last_name, title, loc, pay)

get only profs
dt <- dt %>% filter(title %in% c("PROF-AY", "ASSOC PROF-AY", "ASST PROF-AY",

"PROF-AY-B/E/E", "PROF-HCOMP", "ASST PROF-AY-B/E/E",
"ASSOC PROF-AY-B/E/E", "ASSOC PROF-HCOMP", "ASST PROF-HCOMP"))

203

remove those making less than 30k (probably there only for a period)
dt <- dt %>% filter(pay > 30000)
dt

A tibble: 4,915 x 5
first_name last_name title loc pay
<chr> <chr> <chr> <chr> <dbl>

1 CHRISTOPHER U ABANI PROF-AY Riverside 151200
2 HENRY DON ISAAC ABARBANEL PROF-AY San Diego 160450.
3 ADAM R ABATE ASST PROF-HCOMP San Francisco 85305.
4 KEVORK N. ABAZAJIAN ASST PROF-AY Irvine 82400.
5 M. ACKBAR ABBAS PROF-AY Irvine 168700.
6 ABUL K ABBAS PROF-HCOMP San Francisco 286824.
7 LEONARD J ABBEDUTO PROF-HCOMP Davis 200385.
8 DON P ABBOTT PROF-AY Davis 106400.
9 GEOFFREY WINSTON ABBOTT PROF-HCOMP Irvine 125001.
10 KHALED A.S. ABDEL-GHAFFAR PROF-AY-B/E/E Davis 120100.
i 4,905 more rows

The distribution of salaries is very skewed — it looks like a log-normal distribution:

dt %>% ggplot() + aes(x = pay) + geom_histogram(binwidth = 10000)

0

100

200

300

400

500

1e+05 2e+05 3e+05 4e+05
pay

co
un

t

204

If we set consider the log of pay, we get closer to a normal:

dt %>% ggplot() + aes(x = log2(pay)) + geom_histogram(binwidth = 0.5)

0

500

1000

1500

15 16 17 18
log2(pay)

co
un

t

We can try to explain the pay as a combination of title and location:

unscaled <- lm(pay ~ title + loc, data = dt)
summary(unscaled)

Call:
lm(formula = pay ~ title + loc, data = dt)

Residuals:
Min 1Q Median 3Q Max

-149483 -25197 -1679 18305 213684

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 98397 2003 49.133 < 2e-16 ***
titleASSOC PROF-AY-B/E/E 46898 3402 13.786 < 2e-16 ***
titleASSOC PROF-HCOMP 25428 3955 6.430 1.40e-10 ***

205

titleASST PROF-AY -15060 2370 -6.356 2.26e-10 ***
titleASST PROF-AY-B/E/E 17405 3949 4.407 1.07e-05 ***
titleASST PROF-HCOMP 5545 4800 1.155 0.24805
titlePROF-AY 46095 1719 26.815 < 2e-16 ***
titlePROF-AY-B/E/E 73586 2283 32.233 < 2e-16 ***
titlePROF-HCOMP 115094 2356 48.855 < 2e-16 ***
locDavis -19101 2304 -8.291 < 2e-16 ***
locIrvine -12240 2351 -5.206 2.01e-07 ***
locLos Angeles 7699 2082 3.697 0.00022 ***
locMerced -20940 4484 -4.669 3.10e-06 ***
locRiverside -18333 2893 -6.337 2.56e-10 ***
locSan Diego -11851 2227 -5.322 1.07e-07 ***
locSan Francisco -15808 3493 -4.525 6.17e-06 ***
locSanta Barbara -16579 2411 -6.877 6.89e-12 ***
locSanta Cruz -24973 2930 -8.523 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 40970 on 4897 degrees of freedom
Multiple R-squared: 0.5058, Adjusted R-squared: 0.504
F-statistic: 294.8 on 17 and 4897 DF, p-value: < 2.2e-16

gg_diagnose(lm(pay ~ title + loc, data = dt))

206

0250500750

−1e+05 0e+00 1e+05 2e+05
Residuals

co
un

t Histogram of Residuals
−1e+050e+001e+052e+05

ASSOC PROF−AYASSOC PROF−AY−B/E/EASSOC PROF−HCOMPASST PROF−AYASST PROF−AY−B/E/EASST PROF−HCOMPPROF−AYPROF−AY−B/E/EPROF−HCOMP
titleR

es
id

ua
ls Residual vs. title

−1e+050e+001e+052e+05

BerkeleyDavisIrvineLos AngelesMercedRiversideSan DiegoSan FranciscoSanta BarbaraSanta Cruz
locR

es
id

ua
ls Residual vs. loc

−2e+05−1e+050e+001e+052e+05

100000 150000 200000
Fitted ValuesR

es
id

ua
ls Residual vs. Fitted Value

−1e+050e+001e+052e+05

−4 −2 0 2 4
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot

−4−2024

100000 150000 200000
Fitted Values

S
qr

t (
S

ta
nd

ar
di

ze
d

R
es

id
ua

ls
)

Scale−Location Plot

−4−2024

0.005 0.010 0.015
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage
6274957701351421431551681771791831911932232382422552672743073774044145245425555945966316446656796847367407417467567607708038098208348458468518568698708798878979269491030104110531091114211801188118911941205122712431245128312951345136913781398141314721477147915111531158215871616163416641694171017191732178918071819183218401843184818561880190319061917193519862033203420362062207120992123217421882203224522472288232223372349239523992400241024222498250525072509251225232580259326332687269027322739279328302844285528772893289529592973299530263036305030653068309431013128313031623181319532173226324132613272328632903297331433503363338633903413343034333443344434693485350135163531357935833594361936333646367036913708371137143718372837373800380238293847385638743890390439383940395240144022403040724089409240934108411841764193420142064210421442204253425742674279428743074380439844094412442144494530455145694586459646214637463946484656471947274739474347474751478247864788479247964805481348194846487448840.0000.0010.0020.0030.004

0 1000 2000 3000 4000 5000
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

To note: Berkeley has been taken as the baseline location. Similarly, ASSOC-PROF AY has been
taken as the baseline title.

The Q-Q plot shows that this is a terrible model! Now let’s try with the transformed data:

scaled <- lm(log2(pay) ~ title + loc, data = dt)
summary(scaled)

Call:
lm(formula = log2(pay) ~ title + loc, data = dt)

Residuals:
Min 1Q Median 3Q Max

-2.23150 -0.22355 0.01801 0.25702 1.24529

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.52889 0.02037 811.287 < 2e-16 ***
titleASSOC PROF-AY-B/E/E 0.52397 0.03461 15.141 < 2e-16 ***
titleASSOC PROF-HCOMP 0.34517 0.04023 8.579 < 2e-16 ***
titleASST PROF-AY -0.29772 0.02411 -12.351 < 2e-16 ***

207

titleASST PROF-AY-B/E/E 0.18997 0.04017 4.729 2.32e-06 ***
titleASST PROF-HCOMP 0.06826 0.04883 1.398 0.16220
titlePROF-AY 0.56942 0.01749 32.562 < 2e-16 ***
titlePROF-AY-B/E/E 0.81217 0.02322 34.971 < 2e-16 ***
titlePROF-HCOMP 1.12262 0.02397 46.841 < 2e-16 ***
locDavis -0.20826 0.02344 -8.886 < 2e-16 ***
locIrvine -0.14533 0.02392 -6.075 1.33e-09 ***
locLos Angeles 0.06309 0.02118 2.979 0.00291 **
locMerced -0.24781 0.04562 -5.432 5.84e-08 ***
locRiverside -0.22030 0.02943 -7.485 8.43e-14 ***
locSan Diego -0.14584 0.02266 -6.437 1.33e-10 ***
locSan Francisco -0.11260 0.03554 -3.168 0.00154 **
locSanta Barbara -0.20706 0.02453 -8.442 < 2e-16 ***
locSanta Cruz -0.29716 0.02981 -9.969 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4168 on 4897 degrees of freedom
Multiple R-squared: 0.5372, Adjusted R-squared: 0.5356
F-statistic: 334.3 on 17 and 4897 DF, p-value: < 2.2e-16

gg_diagnose(lm(log2(pay) ~ title + loc, data = dt))

0200400600

−2 −1 0 1
Residuals

co
un

t Histogram of Residuals
−2−101

ASSOC PROF−AYASSOC PROF−AY−B/E/EASSOC PROF−HCOMPASST PROF−AYASST PROF−AY−B/E/EASST PROF−HCOMPPROF−AYPROF−AY−B/E/EPROF−HCOMP
titleR

es
id

ua
ls Residual vs. title

−2−101

BerkeleyDavisIrvineLos AngelesMercedRiversideSan DiegoSan FranciscoSanta BarbaraSanta Cruz
locR

es
id

ua
ls Residual vs. loc
−2−1012

16.0 16.5 17.0 17.5
Fitted ValuesR

es
id

ua
ls Residual vs. Fitted Value

−2−101

−4 −2 0 2 4
Theoretical Quantile

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Normal−QQ Plot
−4−202

16.0 16.5 17.0 17.5
Fitted Values

S
qr

t (
S

ta
nd

ar
di

ze
d

R
es

id
ua

ls
)

Scale−Location Plot

−4−202

0.005 0.010 0.015
Leverage

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

Residual vs. Leverage

47496369708912815518318418819320723827429230734034637740148850355557258158759663166568472373673874174675676779479780380982083484685085185685787088089289794999410261030107310791091114211471188120912451272127912831295
12971345134713691378138513981413146214771526153115661582158716161634165616831694170317081710173317481789180318161819184018451848184918691880190319191935195319861999203420362099210321152123214622472248232223232335234923722395240024102431246825052507250925122523254025932633264526542655272227322739275127932811283828952923294529592991299530263044305030653068310131283161316231813197321732413248325232613272329033503362337633863390339334113443344534483458347634853516352235473573357935943604361136333636364636763711372837603791380038023847390439323955397940144015402240404043406040774089409341084176420142064210421442204237425042574267427943074324435943804392442144494530458645964604460746164639465647044719472547304743475147824788479648024805481948224884488949010.00000.00250.00500.00750.0100

0 1000 2000 3000 4000 5000
Observation Number

C
oo

k'
s

di
st

an
ce

Cook's Distance Plot

208

Much better! Remember to inspect your explanatory and response variables. Ideally, you
want the response to be normally distributed. Sometimes one or many covariates can have
a nonlinear relationship with the response variable, and you should transform them prior to
analysis.

209

10 ANOVA

library(tidyverse) # our friend the tidyverse

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

10.1 Analysis of variance

ANOVA is a method for testing the hypothesis that there is no difference in means of subsets
of measurements grouped by factors. Essentially, this is a generalization of linear regression to
categorical explanatory variables instead of numeric variables, and it is based on very similar
assumptions.

ANOVA perform at its best when we have a particular experimental design: a) we divide the
population into groups of equal size (balanced design); b) we assign “treatments” to the
subjects at random (randomized design); in case of multiple treatment combinations, we
perform an experiment for each combination (factorial design); in most cases, we have a
“null” treatment (e.g., placebo).

We speak of one-way ANOVA when there is a single axis of variation to our treatment
(e.g., no intervention, option A, option B), two-way ANOVA when we apply two treatments
for each group (e.g., no treatment, Ab, AB, aB), and so forth. Extensions include ANCOVA
(ANalysis of COVAriance) and MANOVA (Multivariate ANalysis Of VAriance).

For example, we want to test whether a COVID vaccine protects against infection. We can
assign at random a population of volunteers to two classes (vaccine/placebo) and contrast the
number of people who got sick within 3 months from treatment in the two classes. Of course,

210

we can simply perform a t-test. But what if we assign people to different classes (e.g., M/F,
under/over 65 y/o), and want to contrast the mean infection rate across all classes?

10.1.1 ANOVA assumptions

ANOVA tests whether samples are taken from distributions with the same mean:

• Null hypothesis: the means of the different groups are the same.
• Alternative hypothesis: At least one sample mean is not equal to the others.

Let 𝑌 indicate the response variable, and study the simplest case of one-way ANOVA. We have
divided the samples in 𝑘 classes of size 𝐽1, … , 𝐽𝑘 such that 𝑛 = ∑𝑖 𝐽𝑖. We write an equation
for 𝑌𝑖𝑗 (the 𝑗th observation in group 𝑖):

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗

where 𝜇 is the overall mean; 𝜇+𝛼𝑖 is the mean of group 𝑖—we can always choose the param-
eters such that ∑𝑖 𝛼𝑖 = 0; and, finally, 𝜖𝑖𝑗 is the deviation from the group mean. Practically,
we are testing whether at least one of the 𝛼𝑖 ≠ 0.

Note that we are making the same assumptions as for linear regression:

• The observations are obtained independently (and randomly) from the population defined
by the factor levels (groups)

• The measurements for each factor level are independent and normally distributed
• These normal distributions have the same variance

10.1.2 How one-way ANOVA works

We have 𝑘 groups, and define the overall mean ̄𝑦 = ∑𝑖 ∑𝑗 𝑌𝑖𝑗/𝐽𝑖, where 𝐽𝑖 is the sample size
for group 𝑖. Then the total sum of squared deviations (SSD) is simply:

𝑆𝑆𝐷 =
𝑘

∑
𝑖=1

𝐽𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̄𝑦)2

and the associated degrees of freedom 𝑛 − 1. We car rewrite this as:

𝑆𝑆𝐷 =
𝑘

∑
𝑖=1

𝐽𝑖 (̄𝑦𝑖 − ̄𝑦)2 +
𝐽𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̄𝑦𝑖)
2

211

where now ̄𝑦𝑖 is the mean for the samples in treatment (factor, group) 𝑖. We call the first
term in the r.h.s. the between treatment sum of squares (SST) and the second term the
within treatment (or residual) ssq (SSE). As such 𝑆𝑆𝐷 = 𝑆𝑆𝑇 +𝑆𝑆𝐸. Similarly, we can
decompose SSD as:

𝑆𝑆𝐷 =
𝐽𝑖

∑
𝑗=1

𝑌 2
𝑖𝑗 − 𝑛 ̄𝑦2 = 𝑇 𝑆𝑆 − 𝑆𝑆𝐴

where now TSS is the total sum of squares and SSA is the sum of squares due to the
average. Combining the two equations, we can rewrite TSS as the sum of three components:

𝑇 𝑆𝑆 = 𝑆𝑆𝐴 + 𝑆𝑆𝑇 + 𝑆𝑆𝐸

Note that the degrees of freedom associated with each term are 1, 𝑘 −1 and 𝑛−𝑘, respectively.
What remains to be proved is how to conduct inference.

10.2 Inference in one-way ANOVA

If the null hypothesis were true, then we would expect the between-treatment “variance” SST,
divided by the degrees of freedom (𝑘 − 1) to be the same as the within-treatment “variance”
divided by 𝑛 − 𝑘.

Let’s look at this hypothesis more closely. If the null hypothesis were true, then 𝑆𝑆𝑇 would
be the sum of the squares of independent, normally distributed random variables with mean
zero and variance 𝜎2. If you remember, the distribution of:

𝑄 =
𝑑

∑
𝑖=1

𝑍2
𝑖 ∼ 𝜒2(𝑑)

is called the 𝜒2 distribution with 𝑑 degrees of freedom. Then, under the null hypothesis,
𝑆𝑆𝑇 ∼ 𝜒2(𝑘 − 1) Similarly, 𝑆𝑆𝐸 ∼ 𝜒2(𝑛 − 𝑘). Taking the ratio (having normalized using the
degrees of freedom), we obtain:

𝑆𝑆𝑇
𝑘 − 1

𝑛 − 𝑘
𝑆𝑆𝐸 = 𝑀𝑆𝑇

𝑀𝑆𝐸 ∼ 𝐹(𝑘 − 1, 𝑛 − 𝑘)

where 𝐹 is the F-distribution (in R, you can sample from this distribution using df(x, deg1,
deg2)).

212

10.2.1 Example of comparing diets

For example, the following data contains measurements of weights of individuals before starting
a diet, after 6 weeks of dieting, the type of diet (1, 2, 3), and other variables.

library(tidyverse)
Original URL: "https://www.sheffield.ac.uk/polopoly_fs/1.570199!/file/stcp-Rdataset-Diet.csv"
diet <- read_csv("data/Diet.csv")
diet <- diet %>% mutate(weight.loss = pre.weight - weight6weeks)
glimpse(diet)

Rows: 78
Columns: 8
$ Person <dbl> 25, 26, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 27~
$ gender <dbl> NA, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ Age <dbl> 41, 32, 22, 46, 55, 33, 50, 50, 37, 28, 28, 45, 60, 48, 4~
$ Height <dbl> 171, 174, 159, 192, 170, 171, 170, 201, 174, 176, 165, 16~
$ pre.weight <dbl> 60, 103, 58, 60, 64, 64, 65, 66, 67, 69, 70, 70, 72, 72, ~
$ Diet <dbl> 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, ~
$ weight6weeks <dbl> 60.0, 103.0, 54.2, 54.0, 63.3, 61.1, 62.2, 64.0, 65.0, 60~
$ weight.loss <dbl> 0.0, 0.0, 3.8, 6.0, 0.7, 2.9, 2.8, 2.0, 2.0, 8.5, 1.9, 3.~

make diet into factors
diet <- diet %>% mutate(Diet = factor(Diet))

Write a script below using ggplot to generate boxplots for the weights after three different
diets.

diet %>% ggplot() +
aes(y = weight.loss,

x = Diet,
fill = Diet) +

geom_boxplot()

213

−2.5

0.0

2.5

5.0

7.5

1 2 3
Diet

w
ei

gh
t.l

os
s Diet

1

2

3

We can see that there weight loss outcomes vary for each diet, but diet 3 seems to produce a
larger effect on average. But is the difference between the means/medians actually due to the
diet, or could it have been produced by sampling from the same distribution, given that we
see substantial variation within each diet group?

Here is the result of running ANOVA on the given data set:

diet_anova <- aov(weight.loss ~ Diet, data=diet) # note that this looks like lm!
summary(diet_anova)

Df Sum Sq Mean Sq F value Pr(>F)
Diet 2 71.1 35.55 6.197 0.00323 **
Residuals 75 430.2 5.74

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

print(diet_anova)

Call:
aov(formula = weight.loss ~ Diet, data = diet)

Terms:

214

Diet Residuals
Sum of Squares 71.0937 430.1793
Deg. of Freedom 2 75

Residual standard error: 2.394937
Estimated effects may be unbalanced

10.2.2 Comparison of theory and ANOVA output

Let’s compare this with the calculations from the data set:

1) compute the overall mean
bar_y <- diet %>%
summarise(bar_y = mean(weight.loss)) %>%
as.numeric()

2) compute means by diet and sample size by diet
bar_y_i <- diet %>%
group_by(Diet) %>%
summarise(bar_y_i = mean(weight.loss),

J_i = n())
#(NB: almost balanced!)

3) compute degrees of freedom
n <- nrow(diet)
k <- nrow(diet %>% dplyr::select(Diet) %>% distinct())
deg_freedom <- c(1, k - 1, n - k)
4) compute SSA, SST and SSE
SSA <- n * bar_y^2
SST <- bar_y_i %>%
mutate(tmp = J_i * (bar_y_i - bar_y)^2) %>%
summarise(sst = sum(tmp)) %>%
as.numeric()

SSE <- diet %>%
inner_join(bar_y_i, by = "Diet") %>%
mutate(tmp = (weight.loss - bar_y_i)^2) %>%
summarise(sse = sum(tmp)) %>%
as.numeric()

5) show that TSS = SSA + SST + SSE
TSS <- diet %>%
summarise(tss = sum(weight.loss^2)) %>%
as.numeric()

215

print(c(TSS, SSA + SST + SSE))

[1] 1654.35 1654.35

Now that we have all the numbers in place, we can compute our F-statistics, and the associated
p-value:

Fs <- (SST / (deg_freedom[2])) / (SSE / (deg_freedom[3]))
pval <- 1 - pf(Fs, deg_freedom[2], deg_freedom[3])

Contrast these with the output of aov:

print(deg_freedom[-1])

[1] 2 75

print(c(SST, SSE))

[1] 71.09369 430.17926

print(c(Fs, pval))

[1] 6.197447453 0.003229014

print(summary(aov(weight.loss ~ Diet, data = diet)))

Df Sum Sq Mean Sq F value Pr(>F)
Diet 2 71.1 35.55 6.197 0.00323 **
Residuals 75 430.2 5.74

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

At first glance, this process is not the same as fitting parameters for linear regression, but it
is based on exactly the same assumptions: additive noise and additive effect of the factors,
with the only difference being that factors are not numeric, so the effect of each one is added
separately. One can run linear regression and calculate coefficients that are identical to the
mean and the differences between means computed by ANOVA (and note the p-values too!)

216

diet.lm <- lm(weight.loss ~ Diet, data=diet)
summary(diet.lm)

Call:
lm(formula = weight.loss ~ Diet, data = diet)

Residuals:
Min 1Q Median 3Q Max

-5.1259 -1.3815 0.1759 1.6519 5.7000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.3000 0.4889 6.750 2.72e-09 ***
Diet2 -0.2741 0.6719 -0.408 0.68449
Diet3 1.8481 0.6719 2.751 0.00745 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.395 on 75 degrees of freedom
Multiple R-squared: 0.1418, Adjusted R-squared: 0.1189
F-statistic: 6.197 on 2 and 75 DF, p-value: 0.003229

print(diet.lm$coefficients)

(Intercept) Diet2 Diet3
3.3000000 -0.2740741 1.8481481

10.3 Further steps

10.3.1 Post-hoc analysis

The ANOVA F-test tells us whether there is any difference in values of the response variable
between the groups, but does not specify which group(s) are different. For this, a post-hoc test
is used (Tukey’s “Honest Significant Difference”):

tuk <- TukeyHSD(diet_anova)
tuk

217

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = weight.loss ~ Diet, data = diet)

$Diet
diff lwr upr p adj

2-1 -0.2740741 -1.8806155 1.332467 0.9124737
3-1 1.8481481 0.2416067 3.454690 0.0201413
3-2 2.1222222 0.5636481 3.680796 0.0047819

This compares the three pairs of groups and reports the p-value for the hypothesis that this
particular pair has no difference in the response variable.

10.3.2 Example of plant growth data

Example taken from: One-Way ANOVA Test in R

my_data <- PlantGrowth # import built-in data
head(my_data)

weight group
1 4.17 ctrl
2 5.58 ctrl
3 5.18 ctrl
4 6.11 ctrl
5 4.50 ctrl
6 4.61 ctrl

Show the levels
my_data %>% dplyr::select(group) %>% distinct()

group
1 ctrl
2 trt1
3 trt2

group_by(my_data, group) %>%
summarise(

218

http://www.sthda.com/english/wiki/one-way-anova-test-in-r

count = n(),
mean = mean(weight, na.rm = TRUE),
sd = sd(weight, na.rm = TRUE)

)

A tibble: 3 x 4
group count mean sd
<fct> <int> <dbl> <dbl>

1 ctrl 10 5.03 0.583
2 trt1 10 4.66 0.794
3 trt2 10 5.53 0.443

my_data %>%
ggplot() +
aes(y = weight, x = group,

fill = group) +
geom_boxplot()

3.5

4.0

4.5

5.0

5.5

6.0

ctrl trt1 trt2
group

w
ei

gh
t

group

ctrl

trt1

trt2

Exercise: perform ANOVA and Tukey’s HSD and interpret the results.

219

10.3.3 Two-way ANOVA

One can compare the effect of two different factors simultaneously and see if considering both
explains more of the variance than of one. This is equivalent to the multiple linear regression
with two interacting variables. How would you interpret these results?

diet.fisher <- aov(weight.loss ~ Diet * gender, data = diet)
summary(diet.fisher)

Df Sum Sq Mean Sq F value Pr(>F)
Diet 2 60.5 30.264 5.629 0.00541 **
gender 1 0.2 0.169 0.031 0.85991
Diet:gender 2 33.9 16.952 3.153 0.04884 *
Residuals 70 376.3 5.376

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2 observations deleted due to missingness

10.4 Investigate the UC salaries dataset

read the data
Original URL
dt <- read_csv("https://raw.githubusercontent.com/dailybruin/uc-salaries/master/data/uc_salaries.csv",
col_names = c("first_name", "last_name", "title", "a", "pay", "loc", "year", "b", "c", "d")) %>% dplyr::select(first_name, last_name, title, loc, pay)

Rows: 175000 Columns: 10
-- Column specification --
Delimiter: ","
chr (4): first_name, last_name, title, loc
dbl (6): a, pay, year, b, c, d

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

get only profs
dt <- dt %>% filter(title %in% c("PROF-AY", "ASSOC PROF-AY", "ASST PROF-AY",

"PROF-AY-B/E/E", "PROF-HCOMP", "ASST PROF-AY-B/E/E",
"ASSOC PROF-AY-B/E/E", "ASSOC PROF-HCOMP", "ASST PROF-HCOMP"))

220

simplify titles
dt <- dt %>% mutate(title = ifelse(grepl("ASST", title), "Assistant", title))
dt <- dt %>% mutate(title = ifelse(grepl("ASSOC", title), "Associate", title))
dt <- dt %>% mutate(title = ifelse(grepl("PROF", title), "Full", title))
remove those making less than 50k (probably there only for a period)
dt <- dt %>% filter(pay > 50000)
glimpse(dt)

Rows: 4,795
Columns: 5
$ first_name <chr> "CHRISTOPHER U", "HENRY DON ISAAC", "ADAM R", "KEVORK N.", ~
$ last_name <chr> "ABANI", "ABARBANEL", "ABATE", "ABAZAJIAN", "ABBAS", "ABBAS~
$ title <chr> "Full", "Full", "Assistant", "Assistant", "Full", "Full", "~
$ loc <chr> "Riverside", "San Diego", "San Francisco", "Irvine", "Irvin~
$ pay <dbl> 151200.00, 160450.08, 85305.01, 82400.04, 168699.96, 286823~

1. Plot the distributions of pay by location and title. Is it approximately normal? If not,
transform the data.

2. Run ANOVA for pay as dependent on the two factors separately, report the variance
between means and the variance within groups, and the p-value for the null hypothesis.

3. Run Tukey’s test for multiple comparison of means to report which group(s) are substan-
tially different from the rest, if any.

4. Run a two-way ANOVA for both location and title and provide interpretation.

10.4.1 A word of caution about unbalanced designs

When we have a different number of samples in each category, we might encounter some
problems, as the order in which we enter the terms might matter: for example, run aov(pay
~ title + loc) vs. aov(pay ~ loc + title), and see that the sum of squares for the two
models differ. In some cases, this might lead to the puzzling results—depending on how we
enter the model, we might determine that a treatment has an effect or not. Turns out, there are
three different ways to account for the sum-of-squares in ANOVA, all testing slightly different
hypotheses. For balanced designs, they all return the same answer, but if you have different
sizes, please read here.

221

https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/

11 Model Selection

Cchiù longa è a pinsata cchiù grossa è a minchiata

[the longer the thought, the bigger the bullshit]

— Sicilian proverb

11.1 Goal

For any data you might want to fit, several competing statistical models seem to do a fairly
good job. But which model should you use then?

The goal of model selection is to provide you with a disciplined way to choose among competing
models. While there is no consensus on a single technique to perform model selection (we will
examine some of the alternative paradigms below), all techniques are inspired by Occam’s
razor: given models of similar explanatory power, choose the simplest.

But what does “simplest” mean? Measuring a model’s “complexity” is far from trivial, hence
the different schools of thought. Some approaches simply count the number of free parameters,
and penalize models with more parameters; others take into account how much each param-
eter should be “fine-tuned” to fit the data; other approaches are based on entirely different
premises.

But why should you choose the simplest model? First, simpler models are easier to analyze,
so that for example you could make analytical headway into the mechanics of the process you
want to model; simpler models are also considered more beautiful. Second, you want to avoid
over-fitting: each biological data set—however carefully crafted—is noisy, and you want to fit
the signal, not the noise. If you include too much flexibility in your model, you will get what
looks like an excellent fit for the specific data set, but you will be unable to fit other data sets
to which your model should also apply.

library(tidyverse) # our friend
library(BayesFactor) # Bayesian model selection
library(tidymodels) # for the parsnip package, along with the rest of tidymodels
library(palmerpenguins)
Helper packages

222

#library(readr) # for importing data
library(broom.mixed) # for converting bayesian models to tidy tibbles
library(dotwhisker) # for visualizing regression results

11.2 Problems

1. Over-fitting can lead to wrong inference. (The problem is similar to that of spurious
correlations).

2. Identifiability of parameters. Sometimes it is hard/impossible to find the best value for
a set of parameters. For example, when parameters only appear as sums or products in
the model. In general, it is difficult to prove that the set of parameters leading to the
maximum likelihood is unique.

3. Finding best estimates. For complex models, it might be difficult to find the best esti-
mates for a set of parameters. For example, several areas of the parameter space could
yield a good fit, and the good sets of parameters could be separated by areas with poor
fit. Then, we might get “stuck” in a sub-optimal region of the parameters space.

11.3 Approaches based on maximum-likelihoods

We start by examining methods that are based on maximum likelihoods. For each data set and
model, you find the best fitting parameters (those maximizing the likelihood). The parameters
are said to be at their maximum-likelihood estimate.

11.3.1 Likelihood function

Some notation:

𝐷 → the observed data

𝜃 → the free parameter(s) of the statistical model

𝐿(𝜃|𝐷) → the likelihood function, read “the likelihood of 𝜃 given the data”
̂𝜃 → the maximum-likelihood estimates (m.l.e.) of the parameters

ℒ(𝜃|𝐷) = log 𝐿(𝜃|𝐷) → the log-likelihood

𝐿(̂𝜃|𝐷) → the maximum likelihood

223

11.3.2 Discrete probability distributions

The simplest case is that of a probability distribution function that takes discrete values.
Then, the likelihood of 𝜃 given the data is simply the probability of obtaining the data when
parameterizing the model with parameters 𝜃:

𝐿(𝜃|𝑥𝑗) = 𝑃(𝑋 = 𝑥𝑗; 𝜃)

Finding the m.l.e. of 𝜃 simply means finding the value(s) maximizing the probability of
recovering the data under the model.

11.3.3 Continuous probability distributions

The definition is more complex for continuous variables (because 𝑃(𝑋 = 𝑥; 𝜃) = 0 as there are
infinitely many values…). What is commonly done is to use the density function 𝑓(𝑥; 𝜃) and
considering the probability of obtaining a value 𝑥 ∈ [𝑥𝑗, 𝑥𝑗 + ℎ], where 𝑥𝑗 is our observed data
point, and ℎ is small. Then:

𝐿(𝜃|𝑥𝑗) = lim
ℎ→0+

1
ℎ ∫

𝑥𝑗+ℎ

𝑥𝑗

𝑓(𝑥; 𝜃)𝑑𝑥 = 𝑓(𝑥𝑗; 𝜃)

Note that, contrary to probabilities, density values can take values greater than 1. As such,
when the dispersion is small, one could end up with values of likelihood greater than 1 (or
positive log-likelihoods). In fact, the likelihood function is proportional to but not necessarily
equal to the probability of generating the data given the parameters: 𝐿(𝜃|𝑋) ∝ 𝑃(𝑋; 𝜃).
In many cases, maximizing the likelihood is equivalent to minimizing the sum of square errors
(residuals).

11.4 Likelihoods for linear regression

As you remember, we have considered the normal equations:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜖𝑖

Where the residuals have variance 𝜎2. The likelihood of the parameters is simply the product
of the likelihood for each point:

𝐿(𝛽0, 𝛽1, 𝜎2|𝑌) = ∏
𝑖

𝐿(𝛽0, 𝛽1, 𝜎2|𝑌𝑖) = ∏
𝑖

𝑓(𝑌𝑖; 𝛽0, 𝛽1, 𝜎2) = ∏
𝑖

1√
2𝜋𝜎2 exp (−(𝑌𝑖 − (𝛽0 + 𝛽1𝑋𝑖))2

2𝜎2)

224

We want to choose the parameters such that they maximize the likelihood. Because the
logarithm is monotonic then maximizing the likelihood is equivalent to maximizing the log-
likelihood:

ℒ(𝛽0, 𝛽1, 𝜎2|𝑌) = − log (
√

2𝜋𝜎2) − 1
2𝜎2 ∑

𝑖
(𝑌𝑖 − (𝛽0 + 𝛽1𝑋𝑖))2

Showing that by minimizing the sum of squares, we are maximizing the likelihood.

11.5 Likelihood-ratio tests

These approaches contrast two models by taking the ratio of the maximum likelihoods of
the sample data based on the models (i.e., when you evaluate the likelihood by setting the
parameters to their m.l.e.). The two models are usually termed the null model (i.e., the
“simpler” model), and the alternative model. The ratio of 𝐿𝑎/𝐿𝑛 tells us how many times
more likely the data are under the alternative model vs. the null model. We want to determine
whether this ratio is large enough to reject the null model and favor the alternative.

Likelihood-ratio is especially easy to perform for nested models.

11.5.0.1 Two nested models

Nested means that model ℳ1 has parameters 𝜃1, and model ℳ2 has parameters 𝜃2, such that
𝜃1 ∈ 𝜃2 — by setting some of the parameters of ℳ2 to particular values, we recover ℳ1.

For example, suppose we want to model the height of trees. We measure the response variable
(height of tree 𝑖, ℎ𝑖) as well as the girth (𝑔𝑖). We actually have a data set that ships with R
that contains exactly this type of data:

data(trees)
head(trees)

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

225

The Height of these cherry trees is measured in feet; the Girth is the diameter in inches, and
the Volume is the measuring the amount of timber in cubic feet. Let’s add a Radius measured
in feet:

trees <- trees %>% mutate (Radius = Girth / (2 * 12)) # diameter to radius; inches to feet

Let’s look at the distribution of three heights:

trees %>% ggplot(aes(x = Height)) + geom_density()

0.00

0.02

0.04

0.06

70 80
Height

de
ns

ity

A possible simple model is one that says that all tree heights have heights taken from a
Gaussian distribution with a given mean. In the context of linear regression, we can write the
model ℳ0:

ℎ𝑖 = 𝜃0 + 𝜖𝑖

where we assume that the errors 𝜖𝑖
iid∼ 𝒩(0, 𝜎2). Now fit the model, obtaining ̂𝜃0, and compute

the maximum log-likelihood ℒ0(̂𝜃0, �̂�2|ℎ).
In R, we would call:

226

M0 <- lm(data = trees, Height ~ 1) # only intercept
the m.l.e. of theta_0
theta0_M0 <- M0$coefficients[1]
theta0_M0

(Intercept)
76

log likelihood
logLik(M0)

'log Lik.' -100.8873 (df=2)

Now let’s plot the height of the trees vs. their radius:

trees %>% ggplot(aes(x = Radius, y = Height)) +
geom_point()

70

80

0.4 0.5 0.6 0.7 0.8
Radius

H
ei

gh
t

And compute their correlation:

227

cor(trees$Radius, trees$Height)

[1] 0.5192801

Given the positive correlation between radius and height, we can build a more complex model
in which the height also depends on radius (ℳ1):

ℎ𝑖 = 𝜃0 + 𝜃1𝑟𝑖 + 𝜖𝑖

as for model ℳ0, fit the parameters (note that ̂𝜃0 for model ℳ0 will in general be different
from ̂𝜃0 for model ℳ1), and compute ℒ1(̂𝜃0, ̂𝜃1, �̂�2|ℎ). These two models are nested, because
when setting 𝜃1 = 0 we recover ℳ0.

In R:

M1 <- lm(data = trees, Height ~ Radius) # intercept and slope
theta0_M1 <- M1$coefficients[1]
theta1_M1 <- M1$coefficients[2]
note that now theta_0 takes a different value:
print(c(theta0_M1, theta0_M1))

(Intercept) (Intercept)
62.03131 62.03131

the log likelihood should improve
logLik(M1)

'log Lik.' -96.01663 (df=3)

Which model should we use? You can see that adding an extra parameter improved the
likelihood somewhat.

Enter the likelihood-ratio test. We want to know whether it’s worth using the more complex
model, and to do this we need to calculate a likelihood-ratio statistics. We’re helped by
Wilks’ theorem: as the sample size 𝑛 → ∞, the test statistics 2 log(𝐿1/𝐿0) is asymptotically
𝜒2 distributed with degrees of freedom equal to the difference in the number of parameters
between ℳ1 and ℳ0.

While there are many caveats [^1] this method is commonly used in practice.

228

2 * log-likelihood ratio
lrt <- as.numeric(2 * (logLik(M1) - logLik(M0)))
print("2 log(L1 / L0)")

[1] "2 log(L1 / L0)"

print(lrt)

[1] 9.74125

difference in parameters
df0 <- length(M0$coefficients)
df1 <- length(M1$coefficients)
k <- df1 - df0
print("Number of extra parameters")

[1] "Number of extra parameters"

print(k)

[1] 1

calculate (approximate) p-value
res <- pchisq(lrt, k, lower.tail = FALSE)
print(paste("p-value using Chi^2 with", k, "degrees of freedom"))

[1] "p-value using Chi^2 with 1 degrees of freedom"

print(round(res, 4))

[1] 0.0018

In this case, the likelihood-ratio test would favor the use of the more complex model.

• Pros: Straightforward; well-studied for nested models.
• Cons: Difficult to generalize to more complex cases.

229

11.5.0.2 Adding more models

The data also contains a column with the volume. Let’s take a look:

trees %>% ggplot() + aes(x = Volume, y = Height) + geom_point()

70

80

20 40 60 80
Volume

H
ei

gh
t

And look at the correlation

cor(trees$Volume, trees$Height)

[1] 0.5982497

We can build another model:

M2 <- lm(data = trees, Height ~ Volume) # intercept and slope

Compute the log likelihood:

logLik(M2)

'log Lik.' -94.02052 (df=3)

230

and test whether that’s better than the (nested) model 0:

2 * log-likelihood ratio
lrt <- as.numeric(2 * (logLik(M2) - logLik(M0)))
print("2 log(L2 / L0)")

[1] "2 log(L2 / L0)"

print(lrt)

[1] 13.73348

difference in parameters
df0 <- length(M0$coefficients)
df1 <- length(M2$coefficients)
k <- df1 - df0
print("Number of extra parameters")

[1] "Number of extra parameters"

print(k)

[1] 1

calculate (approximate) p-value
res <- pchisq(lrt, k, lower.tail = FALSE)
print(paste("p-value using Chi^2 with", k, "degrees of freedom"))

[1] "p-value using Chi^2 with 1 degrees of freedom"

print(round(res, 4))

[1] 2e-04

231

Also in this case, the likelihood-ratio test would favor the use of the more complex model. But
how can we contrast the two more complex models ℳ1 and ℳ2? They are not nested!

In fact, we can even concoct another model that uses a mix of radius and volume. If we
assume that trees are cylinders, then we have 𝑉 = 𝜋𝑟2ℎ, and as such ℎ = 𝑉 /(𝜋𝑟2). We can
test whether this is a good approximation by creating a new variable:

trees <- trees %>% mutate(Guess = Radius^2)

trees %>% ggplot() + aes(x = Guess, y = Height) + geom_point()

70

80

0.2 0.4 0.6
Guess

H
ei

gh
t

cor(trees$Guess, trees$Height)

[1] 0.5084267

Pretty good! Let’s add it to our list of models:

M3 <- lm(Height ~ Guess, data = trees)
logLik(M3)

'log Lik.' -96.25156 (df=3)

232

11.6 AIC

Of course, in most cases the models that we want to contrast need not to be nested. Then,
we can try to penalize models according to the number of free parameters, such that more
complex models (those with many free parameters) should be associated with much better
likelihoods to be favored.

In the early 1970s, Hirotugu Akaike proposed “an information criterion” (AIC, now known as
Akaike’s Information Criterion), based, as the name implies, on information theory. Basically,
AIC is measuring (asymptotically) the information loss when using the model in lieu of the
actual data. Philosophically, it is rooted in the idea that there is a “true model” that generated
the data, and that several possible models can serve as its approximation. Practically, it is
very easy to compute:

𝐴𝐼𝐶 = −2ℒ(𝜃|𝐷) + 2𝑘

where 𝑘 is the number of free parameters (e.g., 3 for the simplest linear regression [intercept,
slope, variance of the residuals]). In R, many models provide a way to access their AIC score:

AIC(M0) # only intercept

[1] 205.7745

AIC(M1) # use radius

[1] 198.0333

AIC(M2) # use volume

[1] 194.041

AIC(M3) # use cylinder

[1] 198.5031

You can see that AIC favors the cylinder model over the others. Typically, a difference of
about 2 is considered “significant”, though of course this really depends on the size of the
data, the values of AIC, etc.

233

• Pros: Easy to calculate; very popular.
• Cons: Sometimes it is difficult to “count” parameters; why should each parameter cost

the same, when they have different effects on the likelihood?

11.7 Other information-based criteria

The approach spearheaded by Akaike has been followed by a number of researchers, giving
rise to many similar criteria for model selection. Without getting too much into the details,
here are a few pointers:

• Bayesian Information Criterion 𝐵𝐼𝐶 = −2ℒ(𝜃|𝐷) + 𝑘 log(𝑛) where 𝑛 is the number of
data points. Penalizes parameters more strongly when there are much data.

• Hannan–Quinn information criterion 𝐻𝑄𝐶 = −2ℒ(𝜃|𝐷) + 𝑘 log(log(𝑛))

11.8 Bayesian approaches to model selection

The approaches we’ve examined before are based on “point-estimates”, i.e., only consider the
parameters at their maximum likelihood estimate. Bayesian approaches, on the other hand,
consider distributions of parameters. As such, parameters that give high likelihoods for a
restricted range of values are deemed “more expensive” (because they are “more important”
or need to be “fine-tuned”) than those yielding about the same likelihood for a wide range of
values.

11.8.1 Marginal likelihoods

A very beautiful approach is based on marginal likelihoods, i.e., likelihoods obtained integrating
the parameters out. Unfortunately, the calculation becomes difficult to perform by hand for
complex models, but it provides a good approach for simple models. In general, we want to
assess the “goodness” of a model. Then, using Bayes’ rule:

𝑃(𝑀|𝐷) = 𝑃(𝐷|𝑀)𝑃(𝑀)
𝑃(𝐷)

Where 𝑃 (𝑀|𝐷) is the probability of the model given the data; and 𝑃(𝐷) is the “probability of
the data” (don’t worry, this need not to be calculated), and 𝑃(𝑀) is the prior (the probability
that we choose the model before seeing the data). 𝑃(𝐷|𝑀) is a marginal likelihood: we cannot
compute this directly, because the model requires the parameters 𝜃, however, we can write

𝑃(𝐷|𝑀) = ∫ 𝑃(𝐷|𝑀, 𝜃)𝑃 (𝜃|𝑀)𝑑𝜃

234

where 𝑃 (𝐷|𝑀, 𝜃) is the likelihood, and 𝑃(𝜃|𝑀) is a distribution over the parameter values
(typically, the priors).

For example, let’s compute the marginal likelihood for the case in which we flip a coin 𝑛 = 𝑎+𝑏
times, and we obtain 𝑎 heads and 𝑏 tails. Call 𝜃 the probability of obtaining a head, and suppose
that 𝑃(𝜃|𝑀) is a uniform distribution. Then:

𝑃(𝑎, 𝑏|𝑀) = ∫
1

0
𝑃(𝑎, 𝑏|𝑀, 𝜃)𝑑𝜃 = ∫

1

0
(𝑎 + 𝑏

𝑎)𝜃𝑎(1 − 𝜃)𝑏𝑑𝜃 = 1
𝑎 + 𝑏 + 1 = 1

𝑛 + 1

Interestingly, the marginal likelihood can be interpreted as the expected likelihood when pa-
rameters are sampled from the prior.

11.8.2 Bayes factors

Take two models, and assume that initially we have no preference 𝑃(𝑀1) = 𝑃(𝑀2), then:

𝑃(𝑀1|𝐷)
𝑃(𝑀2|𝐷) = 𝑃(𝐷|𝑀1)𝑃 (𝑀1)

𝑃 (𝐷|𝑀2)𝑃 (𝑀2) = 𝑃(𝐷|𝑀1)
𝑃 (𝐷|𝑀2)

The ratio is called the “Bayes factor” and provides a rigorous way to perform model selection.

11.8.3 Bayes factors in practice

In practice, Bayes Factors can be estimated from MCMC. While we’re not going to get into this
here, we can use a package that a) automatically sets the priors for all the variables (close to
the philosophy known as “Objective Bayes”); b) performs the calculation of the Bayes Factors
for us.

Let’s build very many models. Load the data:

data(trees)
head(trees)

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

235

trees$Radius <- trees$Girth / (2 * 12)
trees$Guess <- trees$Volume / trees$Radius^2

And build the models:

lm_all <- lm(Height ~ ., data = trees) # . means use all cols besides Height
summary(lm_all)

Call:
lm(formula = Height ~ ., data = trees)

Residuals:
Min 1Q Median 3Q Max

-6.7669 -2.4752 -0.2354 1.9335 10.5319

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.6671 16.2947 1.391 0.175562
Girth 1.5127 1.2278 1.232 0.228543
Volume -0.2045 0.2572 -0.795 0.433505
Radius NA NA NA NA
Guess 0.4291 0.1034 4.152 0.000296 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.023 on 27 degrees of freedom
Multiple R-squared: 0.6413, Adjusted R-squared: 0.6014
F-statistic: 16.09 on 3 and 27 DF, p-value: 3.391e-06

logLik(lm_all)

'log Lik.' -84.99667 (df=5)

Perform selection among all models nested into lm_all:

bf_analysis <- regressionBF(Height ~ ., data = trees)
plot(bf_analysis)

236

Girth + Radius

Radius

Volume + Radius

Volume

Girth + Radius + Guess

Volume + Radius + Guess

Volume + Guess

Radius + Guess

vs. Intercept only

1 10 10
0

10
00

10
00

0

1e
+

05

These ratios measure how many times more probable the model is compared to that with only
the intercept (assuming initially that all models are equiprobable). Note that the Bayes Factors
automatically penalize for overly complex models (triplets/quadruplets are ranked after pairs
or even only Guess).

• Pros: Elegant, straightforward interpretation.
• Cons: Difficult to compute for complex models; requires priors.

11.9 Using tidymodels for modeling and cross-validation

There is an excellent suite of packages called tidymodels that offers very beautiful and stream-
lined tools for building models, training them, and evaluating their results. We will use the
Palmer penguins data as an application, with the aim of building a predictive model for the bill
length of penguins. Let us first examine the data graphically to see the relationship between
body mass and bill length:

library(palmerpenguins)
data("penguins")
penguins %>% ggplot(aes(x= body_mass_g, y= bill_length_mm)) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
scale_color_viridis_d(option = "plasma", end = .7)

237

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 2 rows containing missing values (`geom_point()`).

40

50

60

3000 4000 5000 6000
body_mass_g

bi
ll_

le
ng

th
_m

m

There is clearly a relationship, but would it help to add species and sex as variables? Let us
see:

penguins %>% filter (!is.na(sex)) %>% ggplot(aes(x= body_mass_g, y= bill_length_mm, color = sex)) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
facet_wrap(~species, scales = 'free') +
scale_color_viridis_d(option = "plasma", end = .7)

`geom_smooth()` using formula = 'y ~ x'

238

Adelie Chinstrap Gentoo

3000350040004500 3000350040004500 40004500500055006000
40

45

50

55

60

45

50

55

32

36

40

44

body_mass_g

bi
ll_

le
ng

th
_m

m

sex

female

male

It certainly appears that including sex and species will result in a better fit. Let us try to
compare the models we build using the syntax of tidymodels.

First, we need to create the model that we will use in the pipeline. This is created like this:

lm_mod <-
linear_reg() %>%
set_engine("lm")

Next, we clean the data and split it into the training and testing sets, and create a recipe that
specifies the data set and the response variable that we want to model. The other variables
are left as the predictors, but we can take them out of consideration by changing the role of
those variables to “ID”. In this recipe, the only predictor (explanatory) variable in the data
set is body_mass_g.

data("penguins")
pen_clean <- penguins %>% filter(!is.na(bill_length_mm), !is.na(sex), !is.na(species))
Fix the random numbers by setting the seed for reproducibility
set.seed(314)
Put 3/4 of the data into the training set
data_split <- initial_split(pen_clean, prop = 3/4)

Create data frames for the two sets:

239

train_data <- training(data_split)
test_data <- testing(data_split)

pen_recipe <-
recipe(bill_length_mm ~ ., data = train_data) %>%
#update_role(sex, island, year, species, bill_depth_mm, flipper_length_mm, new_role = "ID")
update_role(sex, island, species, bill_depth_mm, flipper_length_mm, new_role = "ID")

We can now combine the recipe for the data and the model to create a workflow for training
the data with a model, and then use it to create a fit:

create workflow
pen_wflow <-
workflow() %>%
add_model(lm_mod) %>%
add_recipe(pen_recipe)

fit the model to the data
pen_fit <-
pen_wflow %>%
fit(data = train_data)

Finally, we can extract all sorts of information, such as best-fit parameters, errors, p-values,
and likelihoods generated by the fit:

fit1 <- pen_fit %>%
extract_fit_parsnip()

tidy(fit1)

A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -259. 698. -0.371 7.11e- 1
2 body_mass_g 0.00406 0.000352 11.5 6.35e-25
3 year 0.142 0.347 0.410 6.83e- 1

glance(fit1) #

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

240

1 0.352 0.346 4.43 66.7 7.27e-24 2 -723. 1453. 1467.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

The tidy and glance functions return different summaries of information; the first one infor-
mation about fitted parameters, the second the R-squared and likelihood of the model.

Let us now modify the recipe to include the species and save the fitting results to a different
object fit2:

pen_recipe2 <-
recipe(bill_length_mm ~ ., data = train_data) %>%
#update_role(sex, island, year, bill_depth_mm, flipper_length_mm, new_role = "ID")
update_role(sex, island, bill_depth_mm, flipper_length_mm, new_role = "ID")

create workflow
pen_wflow2 <-
workflow() %>%
add_model(lm_mod) %>%
add_recipe(pen_recipe2)

fit the model to the data
pen_fit2 <-
pen_wflow2 %>%
fit(data = train_data)

summarise the fit
fit2 <- pen_fit2 %>%
extract_fit_parsnip()

tidy(fit2)

A tibble: 5 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -650. 378. -1.72 8.67e- 2
2 speciesChinstrap 10.0 0.410 24.4 1.51e-67
3 speciesGentoo 3.47 0.569 6.10 4.24e- 9
4 body_mass_g 0.00374 0.000330 11.3 3.53e-24
5 year 0.336 0.188 1.79 7.53e- 2

glance(fit2)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

241

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.812 0.809 2.40 264. 2.64e-87 4 -568. 1149. 1170.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

The R-squared as well as the log likelihood have improved substantially and the AIC is lower.

Now let us see if we can further improve the model quality by incorporating sex as another
explanatory variable:

pen_recipe3 <-
recipe(bill_length_mm ~ ., data = train_data) %>%
#update_role(island, year, bill_depth_mm, flipper_length_mm, new_role = "ID")
update_role(island, bill_depth_mm, flipper_length_mm, new_role = "ID")

create workflow
pen_wflow3 <-
workflow() %>%
add_model(lm_mod) %>%
add_recipe(pen_recipe3)

fit the model to the data
pen_fit3 <-
pen_wflow3 %>%
fit(data = train_data)

summarise the fit
fit3 <- pen_fit3 %>%
extract_fit_parsnip()

tidy(fit3)

A tibble: 6 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -700. 349. -2.00 4.63e- 2
2 speciesChinstrap 10.1 0.379 26.5 1.11e-73
3 speciesGentoo 6.26 0.678 9.23 1.36e-17
4 body_mass_g 0.00177 0.000429 4.13 4.93e- 5
5 sexmale 2.59 0.398 6.52 3.96e-10
6 year 0.364 0.174 2.09 3.75e- 2

glance(fit3)

242

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.840 0.837 2.21 255. 1.47e-94 5 -548. 1110. 1135.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Adding sex further improves the R-squared and log-likelihood, as the AIC drops again.

11.9.1 Prediction and cross-validation

Now let us the three trained models to predict the values of bill length in the test data that
we set aside:

bill_fit1 <- predict(fit1, test_data)
bill_fit2 <- predict(fit2, test_data)
bill_fit3 <- predict(fit3, test_data)

prediction1 <- augment(fit1, test_data)
glimpse(prediction1)

Rows: 84
Columns: 10
$.pred <dbl> 39.98780, 40.79993, 41.51054, 39.78476, 42.22115, 39~
$.resid <dbl> 0.3122029, -4.0999256, -2.6105380, 1.3152350, -6.921~
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Biscoe, ~
$ bill_length_mm <dbl> 40.3, 36.7, 38.9, 41.1, 35.3, 40.5, 37.9, 39.5, 37.2~
$ bill_depth_mm <dbl> 18.0, 19.3, 17.8, 17.6, 18.9, 17.9, 18.6, 16.7, 18.1~
$ flipper_length_mm <int> 195, 193, 181, 182, 187, 187, 172, 178, 178, 196, 18~
$ body_mass_g <int> 3250, 3450, 3625, 3200, 3800, 3200, 3150, 3250, 3900~
$ sex <fct> female, female, female, female, female, female, fema~
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

ggplot(prediction1, aes(x=.pred, y=bill_length_mm)) + geom_point() + geom_smooth() + geom_abline(slope = 1, intercept = 0)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

243

40

50

40 44 48 52
.pred

bi
ll_

le
ng

th
_m

m

metrics(prediction1, truth = bill_length_mm, estimate = .pred)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 4.42
2 rsq standard 0.329
3 mae standard 3.57

bill_fit2 <- predict(fit2, test_data)

prediction2<- augment(fit2, test_data)
glimpse(prediction2)

Rows: 84
Columns: 10
$.pred <dbl> 36.83869, 37.58639, 38.24064, 36.65176, 38.89489, 36~
$.resid <dbl> 3.4613143, -0.8863947, 0.6593600, 4.4482415, -3.5948~
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Biscoe, ~
$ bill_length_mm <dbl> 40.3, 36.7, 38.9, 41.1, 35.3, 40.5, 37.9, 39.5, 37.2~

244

$ bill_depth_mm <dbl> 18.0, 19.3, 17.8, 17.6, 18.9, 17.9, 18.6, 16.7, 18.1~
$ flipper_length_mm <int> 195, 193, 181, 182, 187, 187, 172, 178, 178, 196, 18~
$ body_mass_g <int> 3250, 3450, 3625, 3200, 3800, 3200, 3150, 3250, 3900~
$ sex <fct> female, female, female, female, female, female, fema~
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

ggplot(prediction2, aes(x=.pred, y=bill_length_mm)) + geom_point() + geom_smooth() + geom_abline(slope = 1, intercept = 0)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

35

40

45

50

55

35 40 45 50
.pred

bi
ll_

le
ng

th
_m

m

metrics(prediction2, truth = bill_length_mm, estimate = .pred)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 2.46
2 rsq standard 0.795
3 mae standard 2.05

245

bill_fit3 <- predict(fit3, test_data)

prediction3 <- augment(fit3, test_data)
glimpse(prediction3)

Rows: 84
Columns: 10
$.pred <dbl> 36.32554, 36.68002, 36.99019, 36.23692, 37.30036, 36~
$.resid <dbl> 3.97446307, 0.01998059, 1.90980843, 4.86308368, -2.0~
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Biscoe, ~
$ bill_length_mm <dbl> 40.3, 36.7, 38.9, 41.1, 35.3, 40.5, 37.9, 39.5, 37.2~
$ bill_depth_mm <dbl> 18.0, 19.3, 17.8, 17.6, 18.9, 17.9, 18.6, 16.7, 18.1~
$ flipper_length_mm <int> 195, 193, 181, 182, 187, 187, 172, 178, 178, 196, 18~
$ body_mass_g <int> 3250, 3450, 3625, 3200, 3800, 3200, 3150, 3250, 3900~
$ sex <fct> female, female, female, female, female, female, fema~
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

ggplot(prediction3, aes(x=.pred, y=bill_length_mm)) + geom_point() + geom_smooth() + geom_abline(slope = 1, intercept = 0)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

35

40

45

50

36 40 44 48
.pred

bi
ll_

le
ng

th
_m

m

246

metrics(prediction3, truth = bill_length_mm, estimate = .pred)

A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 2.35
2 rsq standard 0.811
3 mae standard 1.92

The function metrics from package yardstick returns several related measures of agreement
between prediction and the data in the test set. Probably the most common is the root
mean squared error, that is the root of the sum of squared differences between predictions
and observations. Notice that the rmse drops for each successive variable that we add to the
model.

Exercise Add one or several more variables to the list of predictors by modifying the recipe,
calculate the predictions, and compare their performance (e.g. the rmse on the test data) to
the simpler models.

11.10 Other approaches

11.10.1 Minimum description length

Another completely different way to perform model selection is based on the idea on “Minimum
Description Length”, where models are seen as a way to “compress” the data, and the model
leading to the strongest compression should be favored. While we do not cover it here, you
can read about it in [4].

11.10.2 Cross validation

One very robust method to perform model selection, often used in machine learning, is cross-
validation. The idea is simple: split the data in three parts: a small data set for exploring; a
large set for fitting; a small set for testing (for example, 5%, 75%, 20%). You can use the first
data set to explore freely and get inspired for a good model. These data are then discarded.
You use the largest data set for accurately fitting your model(s). Finally, you validate your
model or select over competing models using the last data set.

Because you haven’t used the test data for fitting, this should dramatically reduce the risk of
over-fitting. The downside of this is that we’re wasting precious data. There are less expensive
methods for cross validation, but if you have much data, or data is cheap, then this has the
virtue of being fairly robust.

247

11.10.2.1 Exercise: Do shorter titles lead to more citations?

To test the power of cross-validation, we are going to examine a bold claim by Letchford et
al., 2015: that papers with shorter titles attract more citations than those with longer titles.
We are going to use their original data:

Letchford A, Moat HS, Preis T (2015) The advantage of short paper titles. Royal
Society Open Science 2(8): 150266.

original URL
https://datadryad.org/stash/dataset/doi:10.5061/dryad.hg3j0
dt <- read_csv("data/LMP2015.csv")

Rows: 140000 Columns: 4
-- Column specification --
Delimiter: ","
chr (1): journal
dbl (3): year, title_length, cites

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

The data set reports information on the top 20000 articles for each year from 2007 to 2013.
The Author’s claim is that shorter titles lead to more citations:

dt %>%
group_by(year) %>%
summarise(correlation = cor(title_length, cites, method = "kendall"))

A tibble: 7 x 2
year correlation
<dbl> <dbl>

1 2007 -0.0535
2 2008 -0.0687
3 2009 -0.0560
4 2010 -0.0655
5 2011 -0.0525
6 2012 -0.0528
7 2013 -0.0451

248

https://doi.org/10.1098/rsos.150266

As you can see, title length is anti-correlated (using rank correlation) with the number of
citations.

There are several problems with this claim:

• The authors selected papers based on their citations. As such their claim would need to
be stated as “among top-cited papers there is a correlation”.

• The journals cover a wide array of disciplines. The title length could reflect different
publishing cultures.

• Most importantly, different journals have different requirements for title lengths. For
example, Nature requires titles to be less than 90 characters:

dt%>% filter(journal %in% c("Nature", "Science")) %>%
ggplot() + aes(x = journal, y = title_length) + geom_violin()

50

100

Nature Science
journal

tit
le

_l
en

gt
h

But then, is the effect the Authors are reporting only due to the fact that high-profile journals
mandate short titles? Let’s see whether their claims hold water when considering specific
journals:

only consider journals with more than 1000 papers in the data set
dt <- dt %>%
group_by(journal) %>%
mutate(num_papers = n())%>%

249

filter(num_papers > 1000) %>%
ungroup()

now compute correlation and plot
dt %>%
group_by(year, journal) %>%
summarise(correlation = cor(title_length, cites, method = "kendall")) %>%
ggplot() +
aes(x = reorder(substr(journal, 1, 30), (correlation)), y = correlation) +
geom_boxplot() +
geom_hline(yintercept = 0, colour = "red", linetype = 2) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + # rotate labels x axis
xlab("")

`summarise()` has grouped output by 'year'. You can override using the
`.groups` argument.

−0.2

−0.1

0.0

0.1

C
he

m
ic

al
 C

om
m

un
ic

at
io

ns

C
el

l

P
Lo

S
 O

N
E

P
ro

ce
ed

in
gs

 o
f t

he
 N

at
io

na
l A

c

N
at

ur
e

P
hy

si
ca

l R
ev

ie
w

 L
et

te
rs

A
ng

ew
an

dt
e

C
he

m
ie

 −
 In

te
rn

at
io

A
dv

an
ce

d
M

at
er

ia
ls

N
an

o
Le

tte
rs

S
ci

en
ce

Jo
ur

na
l o

f t
he

 A
m

er
ic

an
 C

he
m

ic

B
lo

od

A
C

S
 N

an
o

A
st

ro
ph

ys
ic

al
 J

ou
rn

al

Jo
ur

na
l o

f C
lin

ic
al

 O
nc

ol
og

y

C
irc

ul
at

io
n

N
ew

 E
ng

la
nd

 J
ou

rn
al

 o
f M

ed
ic

in

co
rr

el
at

io
n

It seems that in several medical journals (NEJM, Circulation, J Clin Oncology) longer titles
fare better than shorter ones. In Nature and PNAS we see a negative correlation, while Science
gives no clear trend.

Let’s look at the mean and standard deviation of citations by journal/year

250

dt %>%
group_by(journal, year) %>%
summarize(mean = mean(log(cites + 1)), sd = sd(log(cites + 1))) %>%
ggplot() +
aes(x = year, y = mean) +
geom_point() +
facet_wrap(~journal)

`summarise()` has grouped output by 'journal'. You can override using the
`.groups` argument.

Proceedings of the National Academy of Sciences of the United States of AmericaScience

Nano Letters NatureNew England Journal of MedicinePhysical Review Letters PLoS ONE

Cell Chemical CommunicationsCirculationJournal of Clinical OncologyJournal of the American Chemical Society

ACS Nano Advanced MaterialsAngewandte Chemie − International EditionAstrophysical Journal Blood

200820102012 200820102012

200820102012 200820102012 200820102012

3
4
5

3
4
5

3
4
5

3
4
5

year

m
ea

n

dt %>%
group_by(journal, year) %>%
summarize(mean = mean(log(cites + 1)), sd = sd(log(cites + 1))) %>%
ggplot() +
aes(x = year, y = sd) +
geom_point() +
facet_wrap(~journal)

`summarise()` has grouped output by 'journal'. You can override using the
`.groups` argument.

251

Proceedings of the National Academy of Sciences of the United States of AmericaScience

Nano Letters NatureNew England Journal of MedicinePhysical Review Letters PLoS ONE

Cell Chemical CommunicationsCirculationJournal of Clinical OncologyJournal of the American Chemical Society

ACS Nano Advanced MaterialsAngewandte Chemie − International EditionAstrophysical Journal Blood

200820102012 200820102012

200820102012 200820102012 200820102012

0.4
0.6
0.8

0.4
0.6
0.8

0.4
0.6
0.8

0.4
0.6
0.8

year

sd

11.10.2.2 Two models

Let’s consider two competing models.

Model1: each journal year has its mean

log(cits + 1) ∼ journal ∶ year

Model2: the length of titles influences citations

log(cits + 1) ∼ journal ∶ year + title-length

We are going to fit the model using 90% of the data; we are going to use the remaining data
for cross-validation.

set.seed(4)
dt <- dt %>% mutate(logcit = log(cites + 1))
sample 10% of the data
data_test <- dt %>% sample_frac(0.3)
data_fit <- anti_join(dt, data_test) # get all those not in data_test

Joining with `by = join_by(year, journal, title_length, cites, num_papers,
logcit)`

252

Now fit the models:

M1 <- lm(logcit ~ factor(year)*journal, data = data_fit)
M2 <- lm(logcit ~ factor(year)*journal + title_length, data = data_fit)

Now let’s try to predict out-of-fit the data that we haven’t used:

M1_predictions <- predict(M1, newdata = data_test)
SSQ_M1 <- sum((log(data_test$cites + 1) - M1_predictions)^2)
M2_predictions <- predict(M2, newdata = data_test)
SSQ_M2 <- sum((log(data_test$cites + 1) - M2_predictions)^2)
print(SSQ_M1)

[1] 2465.712

print(SSQ_M2)

[1] 2465.96

We do not gain anything by including the information on titles.

• Pros: Easy to use; quite general; asymptotically equivalent to AIC.
• Cons: Sensitive to how the data was split (you can average over multiple partitions);

need much data (instability in parameter estimates due to “data loss”)

11.11 References and further reading:

1. Pinheiro, José C.; Bates, Douglas M. (2000), Mixed-Effects Models in S and S-PLUS,
Springer-Verlag, pp. 82–93

2. Tidymodels tutorial

3. Emil Hvitfeldt, Tidymodels for Introduction to Statistical Learning in R

4. Mark H Hansen and Bin Yu Model Selection and the Principle of Minimum Description
Length.

253

https://www.tidymodels.org/start/
https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html
https://www.tandfonline.com/doi/abs/10.1198/016214501753168398
https://www.tandfonline.com/doi/abs/10.1198/016214501753168398

12 Principal Component Analysis

Goal

Introduce Principal Component Analysis (PCA), one of the most popular techniques to per-
form “dimensionality reduction” of complex data sets. If we see the data as points in a
high-dimensional space, we can project the data onto a new set of coordinates such that the
first coordinate captures the largest share of the variance in the data, the second coordinates
captures the largest share of the remaining variance and so on. In this way, we can project
large-dimensional data sets onto low-dimensional spaces and lose the least information about
the data.

library(tidyverse)
library(ggmap) # for ggimage
library(ggfortify) # for autoplot

12.1 Input

We have collected the 𝑛 × 𝑚 data matrix 𝑋 (typically, with 𝑛 ≫ 𝑚), in which the rows are
samples and the columns are 𝑚 measures on the samples. Each row of this matrix defines a
point in the Euclidean space ℝ𝑚, i.e., each point in this space is a potential sample. Naturally,
samples with similar measurements are “close” in this space, and samples that are very different
are “far”. However, 𝑚 can be quite large, and therefore we cannot easily visualize the position
of the points. One way to think of PCA is as the best projection of the points in a 𝑟-dimensional
space (with 𝑟 ≤ 𝑚), for visualization and clustering.

For example, take the iris data set:

data("iris")
ir <- iris %>% dplyr::select(-Species)
sp <- iris %>% dplyr::select(Species)
pairs(ir, col = sp$Species)

254

Sepal.Length

2.
0

3.
5

4.5 5.5 6.5 7.5

0.
5

2.
0

2.0 3.0 4.0

Sepal.Width

Petal.Length

1 3 5 7

0.5 1.5 2.5

4.
5

7.
0

1
4

7

Petal.Width

We can separate the clusters better by finding the best projection in 2D:

autoplot(prcomp(ir, center = TRUE),
data = iris,
colour = "Species",
scale = FALSE) +

coord_equal()

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4
PC1 (92.46%)

P
C

2
(5

.3
1%

) Species

setosa

versicolor

virginica

12.2 Singular Value Decomposition

At the hearth of PCA is a particular matrix decomposition (or factorization): we represent the
matrix 𝑋 as a product of other matrices (or, equivalently, a sum of matrices). In particular,
SVD is defined by the equation:

255

𝑋 = 𝑈Σ𝑉 𝑇

𝑋 is a 𝑛×𝑚 matrix, 𝑈 is an 𝑛×𝑛 orthogonal, unitary matrix and 𝑉 is an 𝑚×𝑚 orthogonal,
unitary matrix, and Σ is a 𝑚 × 𝑛 rectangular, diagonal matrix with non-negative values on
the diagonal. If 𝑉 is a (real) unitary matrix, then 𝑉 𝑉 𝑇 = 𝐼𝑚 (the 𝑚 × 𝑚 identity matrix),
and if 𝑈 is also unitary, then 𝑈𝑈𝑇 = 𝐼𝑛. Another way to put this is 𝑈−1 = 𝑈𝑇 .

(Note: this defines the “full” SVD of 𝐴; equivalently, one can perform a “thin”, or “reduced”
SVD by having 𝑈 of dimension 𝑛 × 𝑝, and Σ and 𝑉 of dimension 𝑝 × 𝑝, where 𝑝 ≤ 𝑚 is the
rank of 𝐴—by default R returns a “thin” SVD; read the details here).

The values on the diagonal of Σ are the singular values of 𝑋, i.e., the nonzero eigenvalues
of 𝑋𝑋𝑇 (or 𝑋𝑇 𝑋). In this context, the matrix 𝑈 contains the left singular vectors of 𝑋
and 𝑉 its right singular vectors. Let’s rearrange the rows/cols of Σ, 𝑈 and 𝑉 such that we
have the singular values in decreasing order: diag(Σ) = (𝜎1, 𝜎2, … , 𝜎𝑚).
Through SVD, the matrix 𝑋 can be seen as a sum of 𝑚 matrices:

𝑋 =
𝑚

∑
𝑖=1

𝑈𝑖Σ𝑖𝑖𝑉 𝑇
𝑖 = 𝑋1 + 𝑋2 + 𝑋3 + …

Where 𝑈𝑖 is the 𝑖th column of 𝑈 . Most importantly, you can prove that at each step (𝑟),
you are computing the “best” approximation of 𝑋 as a sum of 𝑟 rank-1 matrices. I.e., for
each 𝑟 we have that ‖𝑋 − (𝑋1 + 𝑋2 + … + 𝑋𝑟)‖ is as small as possible (Eckart–Young–Mirsky
theorem).

Let’s look at a concrete example. A monochromatic image can be represented as a matrix
where the entries are pixels taking values in (for example, using 8 bits) 0, 1, … , 255:

stefano <- as.matrix(read.csv("data/stefano.txt"))
invert y axis and transpose for visualization
stefano <- t(stefano[,ncol(stefano):1])
rescale values to suppress warning from ggimage
stefano <- stefano / max(stefano)
ggimage(stefano)

256

http://www.seas.ucla.edu/~vandenbe/133B/lectures/svd.pdf

Now let’s perform SVD, and show that indeed we have factorized the image:

s_svd <- svd(stefano)
U <- s_svd$u
V <- s_svd$v
Sigma <- diag(s_svd$d)
this should be equal to the original matrix
stefano_2 <- U %*% Sigma %*% t(V)
let's plot the difference
ggimage(round(stefano - stefano_2, 10))

257

Now we can visualize the approximation we’re making when we take only the first few singular
values. We’re going to plot 𝑋𝑘 (on the left), and ∑𝑘

𝑖=1 𝑋𝑖 (on the right). Even with only a
few iterations (7, out of 255) we obtain a recognizable image:

r <- 7
Xdec <- array(0, c(dim(stefano), r))
Xsum <- array(0, c(dim(stefano), r))
store the first matrix
Xdec[,,1] <- (U[,1] %*% t(V[,1])) * Sigma[1,1]
the first term in the sum is the matrix itself
Xsum[,,1] <- Xdec[,,1]
store the other rank one matrices, along with the partial sum
for (i in 2:r){
Xdec[,,i] <- (U[,i] %*% t(V[,i])) * Sigma[i,i]
Xsum[,,i] <- Xsum[,,i - 1] + Xdec[,,i]

}
now plot all matrices and their sum
plots <- list()
for (i in 1:r){
plots[[length(plots) + 1]] <- ggimage(Xdec[,,i])
plots[[length(plots) + 1]] <- ggimage(Xsum[,,i])

}

258

gridExtra::grid.arrange(grobs = plots, ncol = 2)

12.3 SVD and PCA

Let’s go back to our data matrix 𝑋, and its representation as 𝑛 points (the samples) in 𝑚
dimensions (the measurements). For the moment, consider the case in which each column
of 𝑋 sums to zero (i.e., for each measurement, we have removed the mean—this is called
“centering”). We would like to represent the data as best as possible in few dimensions, such
that a) the axes are orthogonal; b) the axes are aligned with the principal sources of variation
in the data. More precisely, PCA is an orthogonal linear transformation that transforms
the data to a new coordinate system such that the direction of greatest variance of the
data is aligned with the first coordinate, the second greatest with the second coordinate, and
so on.

For example, let’s take the Petal.Lenght and Petal.Width in iris:

X <- iris %>% dplyr::select(Petal.Length, Petal.Width) %>% as.matrix()
X <- scale(X, center = TRUE, scale = FALSE) # remove mean
colors <- iris$Species
plot(X, col = colors)

259

−2 −1 0 1 2 3

−
1.

0
0.

0
1.

0

Petal.Length

P
et

al
.W

id
th

You can see that now the points are centered at (0,0).

In practice, we want to produce a new “data matrix” 𝑌 :

𝑌 = 𝑋𝑊

where 𝑊 is an appropriate change of basis, transforming the data such that the directions of
main variation are exposed. While we could choose any 𝑚 × 𝑚 matrix, we want a) 𝑊 to be
orthogonal (i.e., a “rotation” of the data), and b) all columns of 𝑊 to be unit vectors (no
stretching of the data).

The new columns (i.e., the transformed “measurements”) 𝑌𝑖 can be written as:

𝑌𝑖 = 𝑋𝑊𝑖

Where 𝑌𝑖 is the ith column of 𝑌 and 𝑊𝑖 the ith column on 𝑊 . Let’s start with the first
column 𝑌1: we want to choose 𝑊1 such that the variance of 𝑌𝑖 is maximized. Because the
mean of each column of 𝑋 is zero, then also the mean of 𝑌𝑖 is zero. Thus, the variance is
simply 1

𝑛−1 ∑𝑛
𝑗=1 𝑌 2

𝑖𝑗 = 1
𝑛−1‖𝑌𝑖‖. We can write this is matrix form:

1
𝑛 − 1‖𝑌𝑖‖ = 1

𝑛 − 1‖𝑋𝑊𝑖‖ = 1
𝑛 − 1𝑊 𝑇

𝑖 𝑋𝑇 𝑋𝑊𝑖

Note that 𝑆 = 1
𝑛−1𝑋𝑇 𝑋 is the 𝑚 × 𝑚 sample covariance matrix of 𝑋. Because ‖𝑊𝑖‖ = 1, we

can rewrite this as:

1
𝑛‖𝑌𝑖‖ = 𝑊 𝑇

𝑖 𝑆𝑊𝑖
𝑊 𝑇

𝑖 𝑊𝑖

260

Which is maximized (over 𝑊𝑖) when 𝑊𝑖 is the eigenvector of 𝑆 associated with the largest
eigenvalue (see the Rayleigh quotient), in which case:

1
𝑛 − 1‖𝑌𝑖‖ = 𝑊 𝑇

𝑖 𝑆𝑊𝑖
𝑊 𝑇

𝑖 𝑊𝑖
= 𝜆1

Therefore, the first column of 𝑌 is given by the projection of the data on the first eigenvector
of 𝑆. The variance captured by this first axis is given by the largest eigenvalue of 𝑆. To find
the other columns of 𝑌 , you can subtract from 𝑋 the matrix 𝑌1𝑊 𝑇

1 and repeat.

Note that the first axis captures 𝜆1/ ∑𝑚
𝑖=1 𝜆𝑖 of the total variance in 𝑋. This is typically

reported in PCA as the “loadings” of the various components.

build sample covariance matrix
S <- (1 / (nrow(X) - 1)) * t(X) %*% X
compute eigenvalues and eigenvectors
eS <- eigen(S, symmetric = TRUE)
W is the matrix of eigenvectors
W <- eS$vectors
check
Y <- X %*% W
plot(Y, col = colors)

−3 −2 −1 0 1 2 3

−
0.

6
−

0.
2

0.
2

Y[,1]

Y
[,2

]

eS$values

[1] 3.66123805 0.03604607

261

https://en.wikipedia.org/wiki/Rayleigh_quotient

apply(Y, 2, var)

[1] 3.66123805 0.03604607

Therefore, PCA amounts to simply taking the eigenvectors of 𝑆 ordered by the corresponding
eigenvalues. We can use the SVD to accomplish this task efficiently:

𝑋 = 𝑈Σ𝑉 𝑇

(𝑛 − 1)𝑆 = 𝑋𝑇 𝑋 = (𝑉 Σ𝑇 𝑈𝑇)(𝑈Σ𝑉 𝑇)
= 𝑉 Σ𝑇 Σ𝑉 𝑇

= 𝑉 Σ̃2𝑉 𝑇

where Σ̃2 = Σ𝑇 Σ (or, equivalently the square of the square version of Σ). But contrasting
𝑆 = 𝑊Λ𝑊 𝑇 and 𝑆 = 𝑉 (Σ̃2/(𝑚 − 1))𝑉 𝑇 we see that 𝑉 = 𝑊 . Finally, we have:

𝑌 = 𝑋𝑊 = 𝑈Σ𝑉 𝑇 𝑉 = 𝑈Σ

Therefore, we can perform PCA efficiently by decomposing 𝑋 using SVD.

12.3.1 PCA in R—from scratch

dt <- read_csv("data/handwritten_digits.csv") %>%
arrange(id, x, y)

Rows: 123392 Columns: 6
-- Column specification --
Delimiter: ","
dbl (6): id, label, pixel, value, x, y

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(dt)

262

A tibble: 6 x 6
id label pixel value x y

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0 0 0 1 1
2 1 0 16 0 1 2
3 1 0 32 0 1 3
4 1 0 48 0 1 4
5 1 0 64 0 1 5
6 1 0 80 0 1 6

make into a data matrix with pixels as cols
dt_wide <- pivot_wider(dt %>% dplyr::select(-x, -y),

names_from = pixel,
values_from = value)

X <- (as.matrix(dt_wide %>% dplyr::select(-id, -label)))
make col means = 0
Xs <- scale(X, center = TRUE, scale = FALSE)
compute SVD
X_svd <- svd(Xs)
Y = US is the transformed data
Y <- X_svd$u %*% diag(X_svd$d)

PCA_1 <- dt_wide %>%
dplyr::select(id, label) %>%
mutate(label = as.character(label)) %>%
add_column(PC1 = Y[,1], PC2 = Y[,2])

ggplot(PCA_1) +
aes(x = PC1, y = PC2, label = id, group = label, colour = label) +
geom_text()

263

1

2

3

4 5

678

9
1011

12

13

14

15

1617

18

19

20 21

22

23

24

25

26

27

28

29
30

31

32

33
34

35
36

37

38

3940

41

42

43

44

45 4647

48

49

50
51

5253

54

5556

57

58

59 60

61

62

63
64

65 66
67

68

69
70

71
72

73

74 75
76

77

78 79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

94

95
96

97

98

99
100

101

102

103

104
105

106
107

108

109
110

111
112

113

114

115116

117

118

119

120

121

122

123
124

125
126127

128

129 130

131

132

133

134

135

136

137
138

139

140

141
142

143

144

145

146

147148

149

150

151

152

153

154

155

156

157

158

159

160

161162

163

164

165

166167

168

169

170171

172173174

175

176

177

178

179

180

181

182
183

184

185186

187

188

189

190 191

192

193

194
195

196

197

198 199
200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222223

224

225
226 227

228229

230

231

232
233

234
235

236

237

238

239240

241

242
243

244

245

246

247

248

249

250

251

252

253
254

255256

257

258

259

260
261

262
263

264

265

266

267

268269

270

271

272

273

274

275

276

277
278

279

280

281 282

283
284

285

286

287

288
289290

291

292

293

294
295

296297

298

299

300

301

302

303304

305

306

307
308

309

310

311

312

313

314

315

316
317

318

319

320

321
322

323

324

325
326

327

328329
330

331
332

333334
335

336

337338

339
340

341

342343

344
345

346347
348

349350
351
352

353

354
355

356

357
358

359
360

361

362

363

364

365
366

367

368

369

370

371372

373374

375

376

377
378

379

380

381

382

383384

385

386
387

388
389

390

391

392

393

394

395

396

397

398

399
400

401

402

403

404

405406
407

408

409

410

411

412

413

414
415

416

417

418419

420

421

422

423

424

425

426427428

429

430
431432

433434

435

436

437

438

439

440

441

442

443
444

445446

447
448

449

450 451
452453 454

455

456

457

458

459 460461

462

463

464

465466

467

468

469

470
471

472
473

474475

476

477
478

479 480

481

482

−2

0

2

4

−5.0 −2.5 0.0 2.5 5.0
PC1

P
C

2

label

a

a

a

0

1

5

Pretty good! Let’s see some of the poorly classified points:

This should be a 0
ggimage(matrix(X[122,], 16, 16, byrow = FALSE), fullpage = FALSE)

0

5

10

15

0 5 10 15
x

y

264

This should be a 1
ggimage(matrix(X[141,], 16, 16, byrow = FALSE), fullpage = FALSE)

0

5

10

15

0 5 10 15
x

y

This should be a 5
ggimage(matrix(X[322,], 16, 16, byrow = FALSE), fullpage = FALSE)

265

0

5

10

15

0 5 10 15
x

y

You can also scale the variables turning the sample covariance matrix 𝑆 into a correlation
matrix (this is useful when the variance of different measurements varies substantially).

12.3.2 PCA in R — the easy way

library(ggfortify)
for prcomp, you need only numeric data
X <- dt_wide %>% dplyr::select(-id, -label)
PCA_3 <- prcomp(X)
autoplot(PCA_3,

data = dt_wide %>% mutate(label = as.character(label)),
colour = "label",
frame = TRUE, frame.type = 'norm')

266

−0.10

−0.05

0.00

0.05

0.10

−0.10 −0.05 0.00 0.05
PC1 (16.14%)

P
C

2
(8

.5
4%

) label

0

1

5

12.4 Multidimensional scaling

The input is the matrix of dissimilarities 𝐷, potentially representing distances 𝑑𝑖𝑗 = 𝑑(𝑥𝑖, 𝑥𝑗).
A distance function is “metric” if:

• 𝑑(𝑥𝑖, 𝑥𝑗) ≥ 0 (non-negativity)
• 𝑑(𝑥𝑖, 𝑥𝑗) = 0 only if 𝑥𝑖 = 𝑥𝑗 (identity)
• 𝑑(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥𝑗, 𝑥𝑖) (symmetry)
• 𝑑(𝑥𝑖, 𝑥𝑘) ≤ 𝑑(𝑥𝑖, 𝑥𝑗) + 𝑑(𝑥𝑗, 𝑥𝑘) (triangle inequality)

Given a set of dissimilarities, we can therefore ask whether they are distances, and particularly
whether they represent Euclidean distances.

12.4.1 Goal of MDS

Given the 𝑛×𝑛 matrix 𝐷, find a set of coordinates 𝑥𝑖, … 𝑥𝑛 ∈ ℝ𝑝, such that 𝑑𝑖𝑗 ≈ ‖𝑥𝑖 −𝑥𝑗‖2 (as
close as possible). The operator ‖⋅‖2 is the Euclidean norm, measuring Euclidean distance.

As such, if we can find a perfect solution, then the dissimilarities can be mapped into Euclidean
distances in a 𝑘-dimensional space.

267

12.4.2 Classic MDS

Suppose that the elements of 𝐷 measure Euclidean distances between 𝑛 points, each of which
has 𝑘 coordinates:

𝑋 =
⎡
⎢⎢
⎣

𝑥11 𝑥12 … 𝑥1𝑘
𝑥21 𝑥22 … 𝑥2𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

⎤
⎥⎥
⎦

We consider the centered coordinates:

∑
𝑖

𝑥𝑖𝑗 = 0

And the matrix 𝐵 = 𝑋𝑋𝑡, whose coefficients are 𝐵𝑖𝑗 = ∑𝑘 𝑥𝑖𝑘𝑥𝑗𝑘. We can write the square
of the distance between point 𝑖 and 𝑗 as:

𝑑2
𝑖𝑗 = ∑

𝑘
(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2 = ∑

𝑘
𝑥2

𝑖𝑘 + ∑
𝑘

𝑥2
𝑗𝑘 − 2 ∑

𝑘
𝑥𝑖𝑘𝑥𝑗𝑘 = 𝐵𝑖𝑖 + 𝐵𝑗𝑗 − 2𝐵𝑖𝑗

Note that, because of the centering:

∑
𝑖

𝐵𝑖𝑗 = ∑
𝑖

∑
𝑘

𝑥𝑖𝑘𝑥𝑗𝑘 = ∑
𝑘

𝑥𝑗𝑘 ∑
𝑖

𝑥𝑖𝑘 = 0

Now we compute:

∑
𝑖

𝑑2
𝑖𝑗 = ∑

𝑖
(𝐵𝑖𝑖 + 𝐵𝑗𝑗 − 2𝐵𝑖𝑗) = ∑

𝑖
𝐵𝑖𝑖 + ∑

𝑖
𝐵𝑗𝑗 − 2 ∑

𝑖
𝐵𝑖𝑗 = Tr(𝐵) + 𝑛𝐵𝑗𝑗

Similarly (distances are symmetric):

∑
𝑗

𝑑2
𝑖𝑗 = Tr(𝐵) + 𝑛𝐵𝑖𝑖

And, finally:

∑
𝑖

∑
𝑗

𝑑2
𝑖𝑗 = 2𝑛Tr(𝐵)

From these three equations, we obtain:

268

𝐵𝑖𝑖 =
∑𝑗 𝑑2

𝑖𝑗
𝑛 −

∑𝑖 ∑𝑗 𝑑2
𝑖𝑗

2𝑛2

and

𝐵𝑗𝑗 = ∑𝑖 𝑑2
𝑖𝑗

𝑛 −
∑𝑖 ∑𝑗 𝑑2

𝑖𝑗
2𝑛2

Therefore:

𝐵𝑖𝑗 = −1
2(𝑑2

𝑖𝑗 − 𝐵𝑖𝑖 − 𝐵𝑗𝑗) = −1
2 (𝑑2

𝑖𝑗 − ∑𝑖 𝑑2
𝑖𝑗

𝑛 −
∑𝑗 𝑑2

𝑖𝑗
𝑛 +

∑𝑖 ∑𝑗 𝑑2
𝑖𝑗

𝑛2)

With some algebra, one can show that this is equivalent to:

𝐵 = −1
2𝐶𝐷(2)𝐶

Where 𝐷(2) is the matrix of squared distances, and 𝐶 is the centering matrix 𝐶 = 1− 1
𝑛𝒪 (and

𝒪 is the matrix of all ones). Thus, we can obtain 𝐵 directly from the distance matrix. Once
we’ve done this, 𝑋 can be found by taking the eigenvalue decomposition:

𝐵 = 𝑋𝑋𝑡 = 𝑄Λ𝑄𝑡

(where 𝑄 is the matrix of eigenvectors of 𝐵, and Λ a diagonal matrix of the eigenvalues of 𝐵).
Therefore:

𝑋 = 𝑄Λ 1
2

For example, let’s look at the driving distance in km between cities in the US:

read distances US
usa <- read_csv("data/dist_US.csv")

Rows: 265356 Columns: 3
-- Column specification --
Delimiter: ","
chr (2): from, to
dbl (1): dist

269

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

make into a matrix of distances
M <- usa %>% pivot_wider(names_from = to, values_from = `dist`) %>%
dplyr::select(-from) %>%
as.matrix()

M[is.na(M)] <- 0
rownames(M) <- colnames(M)
make symmetric
M <- M + t(M)
M[1:2, 1:2]

Abilene, TX, United States
Abilene, TX, United States 0.00
Ahwatukee Foothills, AZ, United States 1487.19

Ahwatukee Foothills, AZ, United States
Abilene, TX, United States 1487.19
Ahwatukee Foothills, AZ, United States 0.00

And perform classic MDS using two dimensions:

mds_fit <- cmdscale(M, k = 2) # k is the dimension of the embedding
mds_fit <- tibble(id = rownames(M),

x = mds_fit[,1], y = mds_fit[,2])
pl <- mds_fit %>%
ggplot() +
aes(x = x, y = y) +
geom_point() +
xlim(2 * range(mds_fit$x))

show(pl)

270

−1000

0

1000

2000

−4000 0 4000
x

y

highlight some major cities
hh <- c(122, 175, 177, 373, 408, 445, 572, 596, 691)
mds_highlight <- mds_fit %>% slice(hh)
show(pl + geom_point(data = mds_highlight, aes(colour = rownames(M)[hh])))

−1000

0

1000

2000

−4000 0 4000
x

y

rownames(M)[hh]

Chicago, IL, United States

Denver, CO, United States

Detroit, MI, United States

Los Angeles, CA, United States

Miami, FL, United States

New York City, NY, United States

San Francisco, CA, United States

Seattle, WA, United States

Washington, DC, United States

271

12.5 Readings

SVD is the most important decomposition, but several interesting variations have been pro-
posed for data science. Read this very cool paper on face recognition using Non-negative
Matrix Factorization.

12.5.1 Exercise: PCA sommelier

The file Wine.csv contains several measures made on 178 wines from Piedmont, produced
using three different grapes (column Grape, with 1 = Barolo, 2 = Grignolino, 3 = Barbera).
Use the 13 measured variables (i.e., all but Grape) to perform a PCA. First, do it “the hard
way” using SVD, and then, calling the prcomp function. Can you recover the right classification
of grapes?

272

http://www.columbia.edu/~jwp2128/Teaching/E4903/papers/nmf_nature.pdf

13 Clustering

Goals

• Learn about partitional clustering
• Learn about hierarchical clustering
• Use clustering validation methods
• Apply different methods to larger data sets

library(tidyverse)
library(ggfortify)
library(factoextra)
library(NbClust)
library(fpc)
library(clustertend)
library(palmerpenguins)

The goal of clustering is to classify data points into groups (clusters) by without giving the
algorithm any knowledge of the correct classification. This type of approach is called unsuper-
vised learning and it is appropriate when the “truth” for your data classification is unavailable
or difficult to obtain.

If the truth is unknown, we need a way of deciding which data points belong together. One
common set of approaches relies on a measure of closeness, or distance between points. Of
those, the classic K-means approach is the most straightforward.

13.1 K-means algorithm

• divide data into K clusters
• calculate centroids for each
• go through each data point until nothing changes

– calculate distance to each centroid
– assign to nearest centroid
– recalculate centroids for the two affected clusters

273

Let us apply the k-means algorithm to our well-studied penguin data set. In the script below,
we remove the NAs, and select out the categorical variables, as they are not directly useful for
the distance-based algorithm, leaving the four numeric variables to define similarity between
individuals. The question is, will they cluster penguins according to species?t

#set.seed(20)
glimpse(penguins)

Rows: 344
Columns: 8
$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel~
$ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
$ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
$ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
$ sex <fct> male, female, female, NA, female, male, female, male~
$ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~

pen_data <- penguins %>% drop_na()
#pen_train <- pen_data %>% dplyr::select(-species,-island, -sex, -year) # remove species (the true labels)
pen_train <- pen_data %>% dplyr::select(-species,-island, -sex) # remove species (the true labels)
pen_km <- kmeans(pen_train, 3) #k-means with 3 clusters
pen_km

K-means clustering with 3 clusters of sizes 74, 109, 150

Cluster means:
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year

1 48.81351 15.47297 220.3649 5407.095 2008.081
2 44.66147 17.16239 203.3945 4378.440 2008.055
3 41.12867 18.00133 189.6333 3490.500 2008.013

Clustering vector:
[1] 3 3 3 3 3 3 2 3 3 2 3 3 2 3 2 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 2 3 3 2 3 3
[38] 3 2 3 2 3 3 2 3 2 3 2 3 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 3 3 2 3 2 3 3 3 2
[75] 3 2 3 2 3 3 3 3 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 2 3 2 3 2 3 2 3
[112] 3 3 3 3 3 3 3 3 2 3 2 3 2 3 3 3 2 3 3 3 2 3 2 3 3 3 3 3 3 2 3 3 3 3 2 2 1
[149] 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1
[186] 2 1 2 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 1 2 1 2 1

274

[223] 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 2 1 2 1 1 1 1 2 1 2 1 1 1 2 1 2 1
[260] 1 1 2 1 1 1 3 3 3 3 3 2 3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 3 3 3 3 2 3 3 3 2 3
[297] 2 3 2 3 3 3 2 3 2 2 3 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 2 3

Within cluster sum of squares by cluster:
[1] 8046443 8930328 11522136
(between_SS / total_SS = 86.8 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"

table(pen_km$cluster, pen_data$species)

Adelie Chinstrap Gentoo
1 0 0 74
2 44 20 45
3 102 48 0

fviz_cluster(list(data = pen_train, cluster = pen_km$cluster),
ellipse.type = "norm", geom = "point", stand = FALSE, palette = "jco", ggtheme = theme_classic())

275

−800

−400

0

400

−6000 −5000 −4000
Dim1 (99.5%)

D
im

2
(0

.5
%

) cluster

1

2

3

Cluster plot

The plot is produced by performing PCA to reduce the number of variables from 4 to 2,
helping present the data points in the way that optimizes their visual separation. Notice that
the clusters are not well separated, and when compared with the actual classification given by
species, they do not do well.

However, the four measurements have very different variances, so we try scaling them to make
them all have equal variance of one:

pen_data <- penguins %>% drop_na()
#pen_scaled <- scale(pen_data %>% dplyr::select(-species, -island, -sex, -year))
pen_scaled <- scale(pen_data %>% dplyr::select(-species, -island, -sex))
pen_km <- kmeans(pen_scaled, 3)
pen_km

K-means clustering with 3 clusters of sizes 87, 119, 127

Cluster means:
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g year

1 0.6324997 0.8110783 -0.2682744 -0.3677741 0.04725754
2 0.6537742 -1.1010497 1.1607163 1.0995561 0.03097981
3 -1.0458788 0.4760717 -0.9038218 -0.7783530 -0.06140160

Clustering vector:

276

[1] 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3
[38] 3 1 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 1 3 1 3 3 3 1
[75] 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3 1 3 1 3 3 3 3 3 3 3 1 3 1 3 1 3 1 3
[112] 3 3 3 3 3 3 1 3 3 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 2
[149] 2
[186] 2
[223] 2
[260] 2 2 2 2 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3
[297] 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:
[1] 203.5491 250.6269 247.2534
(between_SS / total_SS = 57.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"

table(pen_km$cluster, pen_data$species)

Adelie Chinstrap Gentoo
1 25 62 0
2 0 0 119
3 121 6 0

fviz_cluster(list(data = pen_scaled, cluster = pen_km$cluster),
ellipse.type = "norm", geom = "point", stand = FALSE, palette = "jco", ggtheme = theme_classic())

277

−2

−1

0

1

2

−2 0 2
Dim1 (55.1%)

D
im

2
(2

0%
) cluster

1

2

3

Cluster plot

Now we get much better separation, as well as much better prediction quality. However, if you
run the above code several times, you will see different results, because k-means starts with
a random selection of centroids. In cases like this, where there is not very obvious clusters,
it may converge to different classifications. Here, for some trials we see very good prediction
quality for all three species, but other times two of the species are commingled.

13.1.1 Assumptions of K-means algorithm

• There is a meaningful distance measure
• Clusters are roughly spherical
• Clusters are of similar size

Generate random data which will be first cluster
clust1 <- data_frame(x = rnorm(200), y = rnorm(200))
Generate the second cluster which will ‘surround’ the first cluster
clust2 <- data_frame(r = rnorm(200, 15, .5),

theta = runif(200, 0, 2 * pi),
x = r * cos(theta), y = r * sin(theta)) %>%

dplyr::select(x, y)
#Combine the data
dataset_cir <- rbind(clust1, clust2)
#see the plot

278

dataset_cir %>% ggplot() + aes(x = x, y = y) + geom_point()

−10

0

10

−10 0 10
x

y

#Fit the k-means model
k_clust_spher1 <- kmeans(dataset_cir, centers=2)
#Plot the data and clusters
fviz_cluster(list(data = dataset_cir,

cluster = k_clust_spher1$cluster),
ellipse.type = "norm",
geom = "point", stand = FALSE,
palette = "jco",
ggtheme = theme_classic())

279

−10

0

10

20

−20 −10 0 10 20
x value

y
va

lu
e cluster

1

2

Cluster plot

Make the first cluster with 200 random values
clust1 <- data_frame(x = rnorm(200),

y = rnorm(200))
Keep 10 values together to make the second cluster
clust2 <- data_frame(x=c(5,5.1,5.2,5.3,5.4),

y=c(5,5,5,5,5))
#Combine the data
dataset_uneven <- rbind(clust1,clust2)
dataset_uneven %>% ggplot() + aes(x = x, y = y) + geom_point()

280

−2

0

2

4

−2 0 2 4
x

y

k_clust_spher3 <- kmeans(dataset_uneven, centers=2)
fviz_cluster(list(data = dataset_uneven,

cluster = k_clust_spher3$cluster),
ellipse.type = "norm",
geom = "point",
stand = FALSE,
palette = "jco",
ggtheme = theme_classic())

281

−2

0

2

4

−2 0 2 4
x value

y
va

lu
e cluster

1

2

Cluster plot

13.2 Hierarchical clustering

Hierarchical clustering is different approach from k-means, although it is also based on a notion
of distance. The goal is to create a tree, akin to phylogeny, based on proximity of different
points to each other, and then to divide it into groups by cutting the tree a certain depth from
the root.

13.2.1 Agglomerative clustering

Start with single data points as “clusters,” then iteratively combine the closest pair of clusters.
The closeness may be defined in the following ways:

1. Single Linkage: In single linkage, we define the distance between two clusters as the
minimum distance between any single data point in the first cluster and any single data
point in the second cluster.

2. Complete Linkage: In complete linkage, we define the distance between two clusters to
be the maximum distance between any single data point in the first cluster and any
single data point in the second cluster.

3. Average Linkage: In average linkage, we define the distance between two clusters to be
the average distance between data points in the first cluster and data points in the second
cluster.

282

4. Centroid Method: In centroid method, the distance between two clusters is the distance
between the two mean vectors of the clusters.

5. Ward’s Method: This method does not directly define a measure of distance between two
points or clusters. It is an ANOVA based approach. One-way univariate ANOVAs are
done for each variable with groups defined by the clusters at that stage of the process.
At each stage, two clusters merge that provide the smallest increase in the combined
error sum of squares.

Use hcut() which compute hclust and cut the tree
cir_hc <- hcut(dataset_cir, k = 2, hc_method = "single")
Visualize dendrogram
fviz_dend(cir_hc, show_labels = FALSE, rect = TRUE)

0.0

2.5

5.0

7.5

10.0

H
ei

gh
t

Cluster Dendrogram

Visualize cluster
fviz_cluster(cir_hc, ellipse.type = "convex")

283

1
2
3 456789 1011
1213

14
15

161718
192021

222324

25
2627
28293031323334353637

38
3940 414243

44
45

46
47

48 4950
51
52

53
5455

56
57

58
5960

6162
63
6465
66

67
68

69707172
73

747576
77
787980

8182
8384

85
86

8788899091
92

9394 959697
9899 100101102

103104
105106

107108109110
111

112113114
115116117
118

119
120
121122

123124125126

127128
129130131

132

133
134 135136137

138
139

140 141142
143

144145146
147
148

149
150

151152153154155156157158
159

160
161162163164

165
166167168
169170171

172173174175
176
177178
179180181

182183
184185186187188

189190191192193194195196197
198

199
200

201

202

203

204

205

206

207

208209

210 211212

213

214

215

216

217

218

219

220

221

222

223

224

225 226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243
244

245

246

247

248

249
250 251

252

253
254

255

256

257

258259

260

261

262

263
264

265266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293 294

295

296297

298

299

300

301

302
303

304305
306

307 308

309

310

311

312

313

314

315

316

317 318

319

320

321
322

323

324

325

326

327

328

329

330

331

332

333

334

335

336 337

338

339

340

341

342

343

344

345

346

347

348

349

350

351
352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368369

370

371

372

373

374

375

376

377 378

379

380

381

382

383

384385

386

387

388

389 390391

392

393394 395

396

397

398 399

400

−2

−1

0

1

2

−2 −1 0 1 2
x value

y
va

lu
e cluster

a

a

1

2

Cluster plot

Use hcut() which compute hclust and cut the tree
uneven_hc <- hcut(dataset_uneven, k = 2, hc_method = "single")
Visualize dendrogram
fviz_dend(uneven_hc, show_labels = FALSE, rect = TRUE)

−1

0

1

2

3

4

H
ei

gh
t

Cluster Dendrogram

284

Visualize cluster
fviz_cluster(uneven_hc, ellipse.type = "convex")

1

2

3

45
6

7

8

9
10

11
1213

14

15

16

17

18

19
20

21

22
23

24
25

2627

28

29

3031
3233

34
35

36

37

38

39

40

41

42

43 44

45
46

47

48

49

50
51

52

53
54

55
56

57

58 59

60

61

62

63 64

65
66

67

68

69

70

71
72

73
74

75

76

77

78
79

8081

82

83

84

858687
88

89 90

91

9293

94
95

96

97

98
99

100

101

102
103

104
105

106

107
108

109
110

111112
113 114115

116

117118

119 120

121
122

123

124125

126

127

128
129

130

131

132

133134

135

136
137

138

139140

141

142

143144

145

146

147

148

149
150

151

152
153

154
155

156

157

158

159

160161

162

163

164

165 166
167 168

169
170

171

172

173

174
175176

177

178
179

180
181

182

183

184185 186 187
188

189

190

191

192193

194

195
196

197
198

199

200

201202203204205

−2

0

2

4

−2 0 2 4
x value

y
va

lu
e cluster

a

a

1

2

Cluster plot

13.2.2 Clustering penguin data using hierarchical methods

Try different methods and see which one generates the best results

Hierarchical clustering
++++++++++++++++++++++++
Use hcut() which compute hclust and cut the tree
pen_hc <- hcut(pen_scaled, k = 3, hc_method = "complete")
Visualize dendrogram
fviz_dend(pen_hc)

285

14
8

16
4

17
0

15
6

17
2

16
6

15
4

17
6

15
0

17
5

15
8

16
2

16
7

15
1

16
0

17
3

18
3

22
4

18
0

19
7

19
9

20
5

21
4

20
9

22
2

21
1

21
2

22
0

18
1

18
7

19
0

19
3

17
9

25
7

23
0

23
4

23
6

24
6

25
9

25
5

26
0

23
8

26
3

22
6

25
1

24
4

22
8

24
0

15
9

14
7

15
2

14
9

17
4

16
1

16
9

15
5

16
3

15
7

17
7

17
1

16
8

17
8

15
3

16
5

19
4

18
2

19
1

21
3

22
3

20
0

21
0

18
6

19
8

20
4

20
8

18
4

20
2

18
8

19
2

20
6

25
3

24
9

26
5

24
2

23
5

24
5

24
7

24
1

25
4

23
2

24
8

19
6

22
1

18
9

21
5

21
9

18
5

19
5

21
6

21
7

20
1

20
3

20
7

21
8

23
1

25
8

25
0

25
6

22
9

25
2

22
5

24
3

23
3

26
1

22
7

26
2

26
4

23
7

23
9

30
3

29
7

29
5

30
5

32
9

31
1

31
3

31
9

32
3

32
6

33
2

30
4

31
6

32
2

32
7

31
8

32
8 68 30
2

29
4

30
7

30
1

30
9

31
2

31
4

31
5

31
0

33
1

32
1

31
7

32
4

33
3

29
2

29
3

30
0

30
8

29
9

30
6

28
2

26
8

28
9

27
7

27
0

27
5

27
4

27
1

27
6

28
5

27
3

27
9

29
1

26
7

28
1

28
3

27
2

28
7

26
6

29
0

26
9

28
4

27
8

28
0

11
7

11
4

10
0

14
0

13
0

13
8

13
6

32
0

12
7

14
4 95 14
3

12
9

14
2

14
5

13
1

11
3

11
5 99 13
9

11
1

12
3

13
5

10
7

12
1

12
5 73 61 63 49 87 75 55 89 93 53 59 13
7 97 11
9

10
3

13
3

11
2

11
6

10
8

13
2

10
9 98 10
2

10
6 96 10
4

12
6

32
5

12
4

33
0 85 79 47 69 83 72 77 82 84 91 54 81 65 78 10
1

10
5

11
0

12
2

12
0

11
8

14
6

12
8

13
4

14
1 86 90 48 74 64 92 58 60 66 50 52 70 94 46 62 76 88 7 35 41 10 32 5 9 31 44 15 13 39 56 80 29
6

29
8 67 71 57 45 51 26 40 28
8

28
6 8 23 28 18 21 4 12 30 43 3 37 14 36 38 34 16 24 25 29 33 22 42 27 1 17 11 19 2 6 20

0

2

4

6
H

ei
gh

t

Cluster Dendrogram

Visualize cluster
fviz_cluster(pen_hc)

1 23456 7
89 101112

13
14

15
161718 192021222324

25262728
29
30
313233

34
35

36
37

38

39
40

4142
43

44

45 46
47

48
49

5051 52
53 5455

56
57 58

59
60

61
62

63
64

65
6667

68
69

707172 73
74

75

76
7778798081828384 85

86
87

88
89

9091 92
93

94

95
96

97
98

99
100 101102103

104
105
106

107
108109 110

111112113114115116117 118
119

120121
122

123
124

125 126127
128129 130

131
132133

134135136
137

138
139

140 141
142 143144145 146

147
148

149
150151

152153 154
155

156
157

158
159

160
161

162

163

164
165 166167

168169170171172 173174
175176

177178

179

180181
182183184

185

186

187
188

189 190
191192

193
194195196 197

198
199200201202 203204

205
206

207208
209

210
211212

213
214

215216217218219
220

221
222

223
224

225
226

227 228
229

230
231

232233
234

235
236

237
238

239
240241242243 244245

246
247 248249

250

251
252

253254 255
256

257
258

259260
261262

263
264265

266267268269
270
271272 273274275276277278 279

280
281282

283
284

285
286 287
288

289
290

291

292293294
295

296

297

298
299300 301302

303

304

305
306307308309

310 311
312 313314 315316

317
318

319
320

321
322

323324325
326327328

329

330
331 332333

−1

0

1

−2 0 2
Dim1 (55.1%)

D
im

2
(2

0%
) cluster

a

a

a

1

2

3

Cluster plot

286

table(pen_hc$cluster, pen_data$species)

Adelie Chinstrap Gentoo
1 145 7 0
2 1 61 0
3 0 0 119

Exercise Try using different clustering methods!

13.3 Clustering analysis and validation

13.3.1 Hopkins statistic

Comparing the mean nearest-neighbor distance between uniformly generated sample points
and mean nearest-neighbor distance within the data set.

𝐻 = 1 − ∑ 𝑢𝑑
𝑖

∑ 𝑢𝑑
𝑖 + ∑ 𝑤𝑑

𝑖

This quantifies the “clustering tendency” of the data set.

Check Cluster Tendency--Hopkins Statistic
hopkins(pen_scaled, n = 30) # n should be about 20% of the data

$H
[1] 0.2307635

run a couple times to sample repeatedly

If H is below 0.5 reject the null hypothesis, which is that the data are generated by a Poisson
point process (uniformly distributed.)

Visual Assessment of Cluster Tendency
fviz_dist(dist(pen_scaled), show_labels = FALSE)+ labs(title = "Scaled penguin data")

287

0

2

4

6

value

Scaled penguin data

• Red is high similarity (low dissimilarity)
• Blue is low similarity (high dissimilarity)

13.3.2 Elbow method

Elbow method
fviz_nbclust(pen_scaled, kmeans, method = "wss") + geom_vline(xintercept = 2, linetype = 2)+
labs(subtitle = "Elbow method for K-means of the scaled penguin data")

288

400

800

1200

1600

1 2 3 4 5 6 7 8 9 10
Number of clusters k

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

Elbow method for K−means of the scaled penguin data

Optimal number of clusters

13.3.3 Silhouette Plot

Measures how similar an object 𝑖 is to the other objects in its same cluster versus the objects
outside of its cluster; 𝑆𝑖 values range from -1 to 1. Close to 1 means very similar to objects in
its own group and dissimilar to others

Silhouette method
fviz_nbclust(pen_scaled, kmeans, method = "silhouette")+ labs(subtitle = "Silhouette method for k-means")

289

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Silhouette method for k−means

Optimal number of clusters

13.3.4 Lazy way: use all the methods!

not evaluating because it does not run on my computer SA Sept 22 2022
nb <- NbClust(pen_scaled, distance = "euclidean", min.nc = 2,

max.nc = 10, method = "kmeans")
fviz_nbclust(nb)

13.3.5 Validation using bootstrapping

One common approach to validating clustering is to use the approach called bootstrapping
which involves repeatedly sampling from the data set, running the clustering algorithm and
comparing the results. One algorithm uses the Jaccard coefficient to quantify similarity be-
tween sets, which is defined as the number of points in the intersection of the two sets (those
which are in both sets), divided by the number of points in the union of the two sets (the point
that are in either one or the other set):

𝐽 = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

The vertical lines indicate the number of points (cardinality) in the set.

290

k <- 3
cboot.hclust <- clusterboot(pen_scaled, clustermethod=kmeansCBI, k= k)

boot 1
boot 2
boot 3
boot 4
boot 5
boot 6
boot 7
boot 8
boot 9
boot 10
boot 11
boot 12
boot 13
boot 14
boot 15
boot 16
boot 17
boot 18
boot 19
boot 20
boot 21
boot 22
boot 23
boot 24
boot 25
boot 26
boot 27
boot 28
boot 29
boot 30
boot 31
boot 32
boot 33
boot 34
boot 35
boot 36
boot 37
boot 38
boot 39

291

boot 40
boot 41
boot 42
boot 43
boot 44
boot 45
boot 46
boot 47
boot 48
boot 49
boot 50
boot 51
boot 52
boot 53
boot 54
boot 55
boot 56
boot 57
boot 58
boot 59
boot 60
boot 61
boot 62
boot 63
boot 64
boot 65
boot 66
boot 67
boot 68
boot 69
boot 70
boot 71
boot 72
boot 73
boot 74
boot 75
boot 76
boot 77
boot 78
boot 79
boot 80
boot 81
boot 82

292

boot 83
boot 84
boot 85
boot 86
boot 87
boot 88
boot 89
boot 90
boot 91
boot 92
boot 93
boot 94
boot 95
boot 96
boot 97
boot 98
boot 99
boot 100

print(cboot.hclust)

* Cluster stability assessment *
Cluster method: kmeans
Full clustering results are given as parameter result
of the clusterboot object, which also provides further statistics
of the resampling results.
Number of resampling runs: 100

Number of clusters found in data: 3

Clusterwise Jaccard bootstrap (omitting multiple points) mean:
[1] 0.5994643 0.5494741 0.7072403
dissolved:
[1] 33 67 0
recovered:
[1] 23 15 27

#cboot.hclust <- clusterboot(bcdata, clustermethod=hclustCBI,
method="single", k=2)

293

13.4 Application to breast cancer data

The following measurements are based on biopsy data on patients with suspected breast cancer
(see [5]). It contains several measurements of cell characteristics, as well as the classification
of each biopsy into malignant or benign (2 or 4). Let us see if using clustering

Import Breast Cancer Data Set
fulldata <- read_csv("data/Wisconsin_Breast_Cancers.csv")
bcdata <- fulldata %>% drop_na() %>% dplyr::select(-Sample, -Class)
glimpse(fulldata)

Rows: 684
Columns: 11
$ Sample <dbl> 1000025, 1002945, 1015425, 1016277, 101702~
$ Clump_Thickness <dbl> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, 1, ~
$ Size_Uniformity <dbl> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3, 1,~
$ Shape_Uniformity <dbl> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3, 1,~
$ Marginal_Adhesion <dbl> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, 1, ~
$ Single_Epithelial_Cell_Size <dbl> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, 2, ~
$ Bare_Nuclei <dbl> 1, 10, 2, 4, 1, 10, 10, 1, 1, 1, 1, 1, 3, ~
$ Bland_Chromatin <dbl> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, 3, ~
$ Normal_Nucleoli <dbl> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, 1, ~
$ Mitoses <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, ~
$ Class <dbl> 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, ~

Visually Inspect Data (PCA)
fviz_pca_ind(prcomp(bcdata), title = "PCA - Breast Cancer data", geom = "point", ggtheme = theme_classic())

294

−5

0

5

10

−10 0
Dim1 (69%)

D
im

2
(7

.2
%

)

PCA − Breast Cancer data

bc_km <- kmeans(scale(bcdata), 2)
bc_km

K-means clustering with 2 clusters of sizes 231, 453

Cluster means:
Clump_Thickness Size_Uniformity Shape_Uniformity Marginal_Adhesion

1 0.9752406 1.1970884 1.1888401 1.0181299
2 -0.4973081 -0.6104358 -0.6062297 -0.5191788
Single_Epithelial_Cell_Size Bare_Nuclei Bland_Chromatin Normal_Nucleoli

1 1.0066757 1.1562984 1.0783707 1.042569
2 -0.5133379 -0.5896356 -0.5498977 -0.531641

Mitoses
1 0.6021640
2 -0.3070638

Clustering vector:
[1] 2 1 2 1 2 1 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 1 2
[38] 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 2 2 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2
[75] 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 2 1 2 1 1
[112] 1 2 2 2 1 2 2 2 2 1 1 1 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1
[149] 1 2 2 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 1 2 1 2 2 2 2 2 1 1 2 1 1 1 2 1

295

[186] 1 2 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 1 1 1 2 2 1 2 2 1 2 1 1 2 1 1
[223] 2 1 1 1 2 1 2 1 1 1 1 2 2 2 2 2 2 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 1
[260] 1 1 2 1 2 1 2 2 2 2 2 1 2 2 1 1 1 1 1 2 1 1 2 2 1 1 1 2 1 1 2 1 2 1 1 2 2
[297] 1 2 2 2 1 2 2 1 1 2 1 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 2 2 1 1 2 2 2 1 2 2
[334] 2 2 1 2 2 1 1 2 2 2 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2
[371] 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 2 2 2 1
[408] 2 2 2 1 2 1 2 2 2 2 2 2 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 1 2 2 1 1 2
[445] 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2
[482] 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 2 2 2 1 2 2 1 1 2 2 2 2 2 2 1 2 2
[519] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1
[556] 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 2 1 2 1 2 1 1 1 2 1 2 2 2 2 2 2 2 2 1 1 1 2
[593] 2 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2
[630] 2 2 2 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1
[667] 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1

Within cluster sum of squares by cluster:
[1] 2156.785 573.108
(between_SS / total_SS = 55.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"

table(bc_km$cluster, fulldata$Class)

2 4
1 10 221
2 434 19

#irisCluster$cluster <- as.factor(irisCluster$cluster)
#ggplot(iris, aes(Petal.Length, Petal.Width, color = iris$cluster)) + geom_point()

fviz_cluster(list(data = bcdata, cluster = bc_km$cluster),
ellipse.type = "norm", geom = "point", stand = FALSE, palette = "jco", ggtheme = theme_classic())

296

−5

0

5

−20 −10 0
Dim1 (85.6%)

D
im

2
(3

.3
%

)

cluster

1

2

Cluster plot

Use hcut() which compute hclust and cut the tree
bc_hc <- hcut(scale(bcdata), k = 2, hc_method = "ward")
Visualize dendrogram
fviz_dend(bc_hc, show_labels = FALSE, rect = TRUE)

0

200

400

600

800

H
ei

gh
t

Cluster Dendrogram

297

Visualize cluster
fviz_cluster(bc_hc, ellipse.type = "convex")

1
2

3
4

5

6

7
8

9

101112
13

14

15

16
1718

19

20

21

22

2324

25
26272829303132 333435

36
37

38
39

4041
42

43

44

45

46
4748

49

5051

52

53
5455

56

5758
59

60

61
62 63

64

65
66

67

6869

70

71
72

73
74757677

78

79
8081

82

83

84

85

86 87
8889909192939495

96

97

98 99

100 101
102

103
104

105

106

107
108

109

110
111

112

113 114
115

116

117
118119120121

122123

124

125

126127

128

129130
131 132133

134135136137138139140
141142

143

144145

146

147148

149

150
151

152

153154

155

156

157158

159

160
161

162

163164165166167

168

169

170

171

172

173
174

175
176

177

178 179

180

181

182

183

184

185

186
187188189190

191
192

193194
195

196

197198199

200

201

202203204

205

206

207208

209

210
211212

213 214
215

216

217

218
219

220

221
222

223

224 225
226 227

228

229

230

231

232

233
234 235236

237
238

239

240
241

242 243

244

245
246

247 248

249250251
252253

254

255256

257

258
259

260

261

262
263

264

265

266
267268269270

271

272273

274
275

276277

278

279
280

281
282283

284285

286
287

288
289

290

291

292

293

294
295296

297

298

299300301 302303

304
305

306

307

308

309

310

311312

313

314
315

316 317

318
319

320
321

322

323

324325

326327

328329330
331

332333 334
335

336

337338339

340

341342

343

344

345
346

347

348

349
350

351352

353

354
355356357 358359360361362363364365366

367368
369

370371

372

373

374
375376377

378

379380381382383384385386

387

388
389390

391392393394
395396397

398

399

400

401

402

403404405

406

407

408409
410

411

412
413

414415416417418419

420
421

422
423424425

426

427
428429430

431432433434

435

436437438

439

440
441

442
443

444445446447448449450451

452

453

454455456457458459460461462463464

465

466467

468

469

470471472
473

474 475

476

477

478

479
480

481482483484485486487488489
490491

492

493494495496
497498499

500
501

502503504

505

506507

508509

510511512513514515

516

517518519520521522523524525526
527528529530531

532

533534
535

536537538
539 540

541 542543544545546547548549550

551

552553554

555
556557

558559

560

561562563564565566

567568

569570 571

572

573

574

575

576577 578

579

580

581582583
584585586587588

589590
591

592593

594

595

596597

598

599600601602603604605

606
607

608
609610

611
612

613614615616
617

618

619620621
622

623624625626627628629630631632

633

634635636637638639640641
642

643

644645646647648649650
651

652

653

654 655

656657658 659660661662663664

665

666 667
668669670671672673

674

675

676

677
678
679680

681

682683684

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5
Dim1 (65.5%)

D
im

2
(8

.6
%

)

cluster

a

a

1

2

Cluster plot

table(bc_hc$cluster, fulldata$Class)

2 4
1 412 2
2 32 238

13.5 References:

1. https://www.r-bloggers.com/exploring-assumptions-of-k-means-clustering-using-r/
2. https://onlinecourses.science.psu.edu/stat505/node/143/
3. https://github.com/hhundiwala/hierarchical-clustering
4. https://www.r-bloggers.com/bootstrap-evaluation-of-clusters/
5. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

298

14 Generalized linear models

14.1 Goal

Learn about Generalized Linear Models (GLMs), and be able to decide which model is most
appropriate for the problem at hand.

Let’s load some packages:

library(tidyverse) # our friend the tidyverse

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(MASS) # negative binom regression

Attaching package: 'MASS'

The following object is masked from 'package:dplyr':

select

299

14.2 Introduction

The linear regression we’ve explored during the past weeks attempts to estimate the expected
value for response (dependent) variable 𝑌 given the predictors 𝑋. It assumes that the
response variable changes continuously, and that errors are normally distributed around the
mean. In many cases, however:

• the response variable does not have support in the whole real line (e.g., binary, count,
only positive values)

• the errors are not normally distributed (e.g., the response variable can take only positive
values)

• the variance changes with the mean (heteroscedasticity)

In these cases, you can use Generalized Linear Models (GLMs) to fit the data. In the
simplest form of GLMs,

• The response variable is modeled by a single-parameter distribution from the exponential
family (Gaussian, Gamma, Binomial, Poisson, etc.)

• A link function linearizes the relationship between the fitted values and the predictors.
• Parameters are estimated through a least squares algorithm.

14.2.1 Model structure

In practice, we need to determine three parts of the model:

• Random component the entries of the response variable (𝑌) are assumed to be in-
dependently drawn from a certain distribution (e.g., Binomial)—typically a distribution
that can be modeled using a single parameter.

• Systematic component the explanatory variables (𝑋1, 𝑋2, …) are combined linearly
to form a linear predictor (e.g., 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + …). The explanatory variables
can be continuous, categorical, or mixed.

• Link function 𝑔(𝑢) specifies how the random and systematic components are connected.

14.3 Binary data

The most extreme case of departure from normality is when the response variable can assume
only values 0 or 1 (no/yes, survived/deceased, lost/won, etc.). A Bernoulli random variable
can take values 0 or 1, and therefore provides the Random component of the model:

𝑃(𝑌𝑖 = 𝑦𝑖|𝜋𝑖) = 𝜋𝑦𝑖
𝑖 (1 − 𝜋𝑖)1−𝑦𝑖

300

Saying that the probability 𝑃(𝑌𝑖 = 1) = 𝜋𝑖, and 𝑃(𝑌𝑖 = 0) = 1−𝜋𝑖. Now we want to relate the
parameter 𝜋𝑖 to the linear predictor (i.e., choose a link function). This can be accomplished
in a number of ways.

14.3.1 Logistic regression

The most popular choice is to use the Logit function as the link function:

Logit(𝜋𝑖) = 𝛽0 + 𝛽1𝑥𝑖

where the function can be written as:

Logit(𝜋𝑖) = log (𝜋𝑖
1 − 𝜋𝑖

) = log(𝜋𝑖) − log(1 − 𝜋𝑖)

Practically, this means that

𝜋𝑖 = 𝑒𝛽0+𝛽1𝑥𝑖

1 + 𝑒𝛽0+𝛽1𝑥𝑖
= 1 − 1

1 + 𝑒𝛽0+𝛽1𝑥𝑖

Clearly, when 𝛽0 + 𝛽1𝑥𝑖 = 0, the probability 𝜋𝑖 = 1/2, while the probability tends to 1 when
(𝛽0 + 𝛽1𝑥𝑖) → ∞ and to zero when (𝛽0 + 𝛽1𝑥𝑖) → −∞. :

some random data
X <- rnorm(100)
beta_0 <- 0.35
beta_1 <- -3.2
linear_predictor <- beta_0 + beta_1 * X
predicted_pi_i <- exp(linear_predictor) / (1 + exp(linear_predictor))
ggplot(data = tibble(linear_predictor = linear_predictor, probability = predicted_pi_i)) +
aes(x = linear_predictor, y = probability) +
geom_point() + geom_line()

301

0.00

0.25

0.50

0.75

1.00

−5 0 5
linear_predictor

pr
ob

ab
ili

ty

As you can see, this is a logistic curve, hence the name. The parameters 𝛽0 and 𝛽1 control
the location of the inflection point and the steepness of the curve, allowing you to model
binary response variables (and, with a slight abuse of the error structure, proportions or
probabilities).

Other choices of link functions are possible. For example, in economics the probit function is
preferred:

Probit(𝜋𝑖) = 𝛽0 + 𝛽1𝑥𝑖

where

Probit(𝜋𝑖) = Φ(𝜋𝑖)
and Φ(⋅) is the cumulative distribution function of the standard normal normal distribution:

Φ(𝑧) = 1√
2𝜋 ∫

𝑧

−∞
𝑒 −𝑡2

2 𝑑𝑡

Clearly, you could alternatively use the cumulative distribution function of any distribution
that has support on the real line.

302

14.3.2 A simple example

We want to know whether being in first, second and third class, as well as gender (women and
women first!) influenced the probability of survival in the Titanic disaster. We start with a
null model (all passengers have the same probability of survival):

library(titanic)
model 0: probability of survival in general
regress against an intercept
model0 <- glm(Survived ~ 1, # only intercept

data = titanic_train,
family = "binomial") # logistic regression

summary(model0)

Call:
glm(formula = Survived ~ 1, family = "binomial", data = titanic_train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.47329 0.06889 -6.87 6.4e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1186.7 on 890 degrees of freedom
Residual deviance: 1186.7 on 890 degrees of freedom
AIC: 1188.7

Number of Fisher Scoring iterations: 4

the best fitting (alpha) intercept should lead to
e^alpha / (1 + e^alpha) = mean(Survived)
mean(titanic_train$Survived)

[1] 0.3838384

exp(model0$coefficients) / (1 + exp(model0$coefficients))

303

(Intercept)
0.3838384

Now let’s include gender:

model1 <- glm(Survived ~ Sex, # one sex as baseline, the other modifies intercept
data = titanic_train,
family = "binomial")

summary(model1)

Call:
glm(formula = Survived ~ Sex, family = "binomial", data = titanic_train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0566 0.1290 8.191 2.58e-16 ***
Sexmale -2.5137 0.1672 -15.036 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1186.7 on 890 degrees of freedom
Residual deviance: 917.8 on 889 degrees of freedom
AIC: 921.8

Number of Fisher Scoring iterations: 4

What is the best-fitting probability of survival for male/female?

coeffs <- model1$coefficients
prob women
as.numeric(1 - 1 / (1 + exp(coeffs[1])))

[1] 0.7420382

prob men
as.numeric(1 - 1 / (1 + exp(coeffs[1] + coeffs[2])))

304

[1] 0.1889081

Now let’s see whether we can explain better the data using the class:

model2 <- glm(Survived ~ Sex + factor(Pclass), # combine Sex and Pclass
data = titanic_train,
family = "binomial")

summary(model2)

Call:
glm(formula = Survived ~ Sex + factor(Pclass), family = "binomial",

data = titanic_train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.2971 0.2190 10.490 < 2e-16 ***
Sexmale -2.6419 0.1841 -14.351 < 2e-16 ***
factor(Pclass)2 -0.8380 0.2447 -3.424 0.000618 ***
factor(Pclass)3 -1.9055 0.2141 -8.898 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1186.66 on 890 degrees of freedom
Residual deviance: 826.89 on 887 degrees of freedom
AIC: 834.89

Number of Fisher Scoring iterations: 4

A woman in first class would have survival probability:

coeffs <- model2$coefficients
prob women first class
as.numeric(1 - 1 / (1 + exp(coeffs[1])))

[1] 0.9086385

While a man in third class:

305

as.numeric(1 - 1 / (1 + exp(coeffs[1] + coeffs[2] + coeffs[4])))

[1] 0.09532814

Consider the alternative models Survived ~ Sex * factor(Pclass), Survived ~ Sex
+ Pclass, Survived ~ Sex * Pclass, Survived ~ Sex:factor(Pclass), Survived ~
Sex:Pclass. Explain what each model is doing in English.

14.3.3 Exercise in class: College admissions

With slight abuse of notation, you can fit probabilities using the logistic regression (the only
problem is that you don’t know how many values contributed to the calculations of the
probabilities—i.e., sample sizes). Read in the file admission_rates.csv, containing data
on admissions to several universities. Your goal is to find a good prediction (or a good combi-
nation of predictors) for the Admission_rate. You can use State, Ownership (public/private),
Citytype (town, suburb, city), SAT (typical SAT score of admits), AvgCost (tuition). Fit the
models using:

dt <- read_csv("data/admission_rates.csv")

Rows: 195 Columns: 7
-- Column specification --
Delimiter: ","
chr (4): Name, State, Ownership, Citytype
dbl (3): SAT, AvgCost, Admission_rate

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

example
logit_1 <- glm(Admission_rate ~ AvgCost, data = dt, family = "binomial")

Warning in eval(family$initialize): non-integer #successes in a binomial glm!

(do not worry about the warning non-integer #successes in a binomial glm!).

• Plot fitted vs. observed admission rates, when using different combinations of predictors.

For the example above:

306

plot(dt$Admission_rate, logit_1$fitted.values)
abline(c(0,1))

0.2 0.4 0.6 0.8

0.
3

0.
5

0.
7

dt$Admission_rate

lo
gi

t_
1$

fit
te

d.
va

lu
es

• Score the models using AIC: which is the single best predictor of acceptance rate? (Note:
as we will see later this week, the lower the AIC, the better).

AIC(logit_1)

[1] 220.7783

• Which the best combination of two predictors?

14.4 Count data

14.4.1 Poisson regression

Suppose your response variables are non-negative integers. For example, we are counting the
number of eggs females lay as a function of their age, body size, etc. A possible model for this
case is to think of the response variable as being sampled from a Poisson distribution:

𝑌𝑖 ∼ Pois(𝜆𝑖)

and that the logarithm of the parameter 𝜆𝑖 depends linearly on the predictors:

𝔼[𝜆𝑖] = 𝔼[log(𝑌𝑖|𝑋𝑖)] = 𝛽0 + 𝛽1𝑋𝑖

307

In this case, our link function is the logarithm, transforming the relationship between the fitted
values and the predictors into a linear regression.

14.4.2 Exercise in class: Number of genomes

The file data/genomes.csv contains the year in which the genome of a given animal was
published. The file sequence_cost.csv the estimated cost per sequencing a Mb in a given
year.

• Count the number of genomes published per year (store the value as n) and store it in the
tibble num_genomes along with the values Year and Dollars_per_Mb (note: you need to
use inner_join to pull this off);

• Fit the number of genomes published in a given year:

– using only an intercept (your predictions should match the mean) (Code: pois_1
<- glm(n ~ 1, data = num_genomes, family = "poisson"))

– using the year as a predictor
– using the cost of sequencing as a predictor

• For each model, plot the observed n vs its predicted value, and compute AIC. Is the fit
superior when we use Year or Dollars_per_Mb?

14.4.3 Underdispersed and Overdispersed data

The main feature of the Poisson distribution is that the mean and the variance are both equal
to 𝜆. You might remember (Taylor expansion) that:

𝑒𝑥 =
∞

∑
𝑛=0

𝑥𝑛

𝑛!

Then, for 𝑋 sampled from a Poisson distribution:

𝔼[𝑋] =
∞

∑
𝑥=0

𝑥𝑃(𝑋 = 𝑥)

=
∞

∑
𝑥=0

𝑥𝑒−𝜆 𝜆𝑥

𝑥!

= 𝜆𝑒−𝜆
∞

∑
(𝑥−1)=0

𝜆(𝑥−1)

(𝑥 − 1)!
= 𝜆𝑒−𝜆𝑒𝜆

= 𝜆

308

Similarly, using

𝕍[𝑋] = 𝔼[𝑋2] − 𝔼[𝑋]2

= (
∞

∑
𝑥=0

𝑥2𝑒−𝜆 𝜆𝑥

𝑥!) − 𝜆2

= …
= 𝜆

The fact that the variance equals the mean is a hard constraint, rarely matched by real data.
When you encounter over-dispersion (i.e., the variance in the data is much larger than what
assumed by Poisson), you need to choose a different model. This happens very often, and the
main solution to use is a Negative Binomial Regression (a negative binomial distribution
can be thought of as a Poisson with a scaled variance). In practice, this amounts to fitting:

𝔼[𝜆𝑖] = 𝛽0 + 𝛽1𝑋𝑖

and

𝔼[𝜆2
𝑖] − 𝔼[𝜆𝑖]2 = 𝕍[𝜆𝑖] = 𝜙𝜆𝑖

Where 𝜙 controls the dispersion of the data. A value 𝜙 > 1 signals over-dispersion, while (the
very rare case of) 𝜙 < 1 under-dispersion. The Poisson regression is appropriate only when
𝜙 ≈ 1. A simple way to test for dispersion in to fit a quasipoisson model, which returns a
dispersion parameter (anything larger than 1 means over-dispersion).

14.4.4 Exercise in class: Number of genomes

• For the models above, change the family to quasipoisson to check the dispersion (e.g.,
qpois_1 <- glm(n ~ 1, data = num_genomes, family = "quasipoisson")).

• Do you have over-dispersion?
• If the data are over-dispersed, fit them again using glm.nb (a negative binomial regression

model provided by the package MASS).

14.4.5 Separate distribution for the zeros

In several biologically-relevant cases, we have an excess of zeros. For example, you might
have animals, that, if they reach the age of 1, will go on to a live a number of years—say
well-described by a Poisson distribution. However, mortality immediately after birth is high.
In such cases, you can use zero-inflated or zero-hurdle models.

309

In zero-inflated models, you can think of having a conditional branching: with probability 𝑝𝑧
your count is zero; if not (prob. 1 − 𝑝𝑧) it is sampled from a given distribution. As such a
count of zero can stem from two different processes: either because you got a zero at the first
step, or because you have sampled a zero from the distribution.

Zero-hurdle models are slightly different: you first decide whether you’re going to have a zero;
if not, you sample your data from a truncated distribution, such that you cannot sample a
zero from this second source.

Zero-inflated and zero-hurdle models are examples of mixture models.

14.5 Other GLMs

Historically, GLMs have been defined for the canonical families:

• Gaussian: linear regression
• Gamma and Inverse Gaussian: Positive, continuous
• Poisson: count data
• Negative Binomial: count data (fit an ancillary parameter for over-dispersion)
• Binary/Binomial (logistic): binary responses; number of successes; probabili-

ties/proportions (with slight abuse).

However, the same basic idea led to the development of “non-canonical” GLMs:

• Log-normal: Positive, continuous
• Log-gamma: survival models
• Probit: binary

and many others. Fitting the models can be done using Maximum Likelihoods, or in a Bayesian
framework (typically, through MCMC).

14.6 Readings and homework

• There are two useful swirls in the course Regression Models: Binary Outcomes and
Count Outcomes

• An excellent book on GLMs in R
• Regression Models for Count Data in R

310

https://en.wikipedia.org/wiki/Mixture_model
https://link.springer.com/book/10.1007/978-1-4419-0118-7
https://cran.r-project.org/web/packages/pscl/vignettes/countreg.pdf

15 Machine learning methods for classification

15.1 Introduction

The classification problem is a very common one in practice, and we have already seen the
use of GLMs to systematically predict binary response variables. We have also used clustering
to perform unsupervised learning, where we do not have any information about correct labels
for data points. We now turn to supervised classification problems and introduce two different
approaches: a Bayesian one and a tree-based one.

15.2 Naive Bayes classifier

Suppose that we wish to classify an observation into one of K classes, which means there is a
response variable Y can take on K different values, or labels. Let 𝜋𝑘 be the prior probability
that a randomly chosen observation comes from the k-th class. Let 𝑓𝑘(𝑋) = 𝑃𝑟(𝑋|𝑌 = 𝑘) be
the density function of X for an observation that comes from the k-th class.

Assuming we have the prior probabilities and the conditional probability distributions of the
observations within each category 𝑘, we can use Bayes’ theorem to compute the probability of
each class, given a set of observations 𝑥 by turning around the conditionality:

𝑃(𝑌 = 𝑘|𝑋 = 𝑥) = 𝜋𝑘𝑓𝑘(𝑥)
∑𝐾

𝑖 𝜋𝑖𝑓𝑖(𝑥)
And let us use the notation 𝑝𝑘(𝑥) = 𝑃(𝑌 = 𝑘|𝑋 = 𝑥) to mean the posterior probability that
an observation 𝑥 belongs to class 𝑘.

Let us use the penguin data as an example, where we want to classify the observations by
species. Then, if we take a training set with known classifications, we can take the prior
probabilities 𝜋𝑘 to be the fractions of observed birds of each species, and the probability
distributions of each explanatory variable for each species 𝑓𝑘(𝑋) can be estimated from the
observed distributions of the explanatory variables (flipper lengths, etc.) for Adelie, Gentoo,
and Chinstrap subsets of observations.

The difficult part in the above example is estimating the distributions 𝑓𝑘(𝑋), which is es-
pecially challenging for joint distributions of multiple variables. One method, called Linear

311

Discriminant Analysis, assumes the distributions have the same covariance matrices for all
classes and only differ in their mean values. Another, called Quadratic Discriminant Analysis,
assumes different covariance matrices for different classes.

The Naive Bayes classifier instead assumes that within each class the explanatory variables 𝑋𝑖
are independent, and thus

𝑓𝑘(𝑥) = 𝑓𝑘1(𝑥1) × 𝑓𝑘2(𝑥2) × ... × 𝑓𝑘𝑛(𝑥𝑛)

where 𝑓𝑘𝑖(𝑥𝑖) is the probability distribution of the i-th explanatory variable 𝑥𝑖 for class 𝑘.

This modifies the Bayes’ formula to look like this:

𝑃 (𝑌 = 𝑘|𝑋 = 𝑥) = 𝜋𝑘𝑓𝑘1(𝑥1) × 𝑓𝑘2(𝑥2) × ... × 𝑓𝑘𝑛(𝑥𝑛)
∑𝐾

𝑖 𝜋𝑖𝑓𝑘1(𝑥1) × 𝑓𝑘2(𝑥2) × ... × 𝑓𝑘𝑛(𝑥𝑛)
Although it looks more complicated, we can compute each distribution function separately, so
as long as there is enough data in the training set to estimate each explanatory variable for
each class, the calculation is manageable.

15.2.1 Naive Bayes penguin example

Here is an example of using tidymodels for classification using Naive Bayes.

First, we load and clean the data, then split the observations into training and test sets.

data("penguins")
pen_clean <- penguins %>% drop_na()

Put 3/4 of the data into the training set
pen_split <- initial_split(pen_clean, prop = 3/4)

Create data frames for the two sets:
pen_train <- training(pen_split)
pen_test <- testing(pen_split)

We then define a model specification using the parsnip package. Here is how to set up a Naive
Bayes model:

nb_spec <- naive_Bayes() %>%
set_mode("classification") %>%
set_engine("naivebayes") %>%
set_args(usekernel = FALSE)

312

Next we define the recipe, which specifies the data tibble and which variables will be explana-
tory (predictors) and which will be the response variable. In this case we will use species as
the response variables, and all other variables, except for island as predictors.

pen_recipe <-
recipe(species ~ ., data = pen_train) %>%
update_role(island, new_role = "ID")

Then we define the workflow, which combines the model with the recipe:

pen_workflow_nb <- workflow() %>%
add_model(nb_spec) %>%
add_recipe(pen_recipe)

Finally, we use this workflow on the data set to fit the response variable on the training set:

fit_nb <- pen_workflow_nb %>% fit(pen_train)

We can examine the contents of the fitted model, such as parameters, using extract_fit_parsnip.
In the case of Naive Bayes, it returns the calculated mean and standard deviations for each
variable, by class:

fit_nb %>%
extract_fit_parsnip()

parsnip model object

================================== Naive Bayes ==================================

Call:
naive_bayes.default(x = maybe_data_frame(x), y = y, usekernel = ~FALSE)

Laplace smoothing: 0

A priori probabilities:

Adelie Chinstrap Gentoo

313

0.4417671 0.2008032 0.3574297

Tables:

::: bill_length_mm (Gaussian)

bill_length_mm Adelie Chinstrap Gentoo
mean 38.535455 48.768000 47.347191
sd 2.746661 3.315790 3.167989

::: bill_depth_mm (Gaussian)

bill_depth_mm Adelie Chinstrap Gentoo
mean 18.2390909 18.3880000 14.9640449
sd 1.1911058 1.1713659 0.9862979

::: flipper_length_mm (Gaussian)

flipper_length_mm Adelie Chinstrap Gentoo
mean 189.400000 195.860000 216.831461
sd 6.496576 7.194130 6.272661

::: body_mass_g (Gaussian)

body_mass_g Adelie Chinstrap Gentoo
mean 3646.3636 3705.0000 5098.8764
sd 442.3902 399.7129 508.8689

::: sex (Bernoulli)

sex Adelie Chinstrap Gentoo

314

female 0.5636364 0.5200000 0.5168539
male 0.4363636 0.4800000 0.4831461

... and 1 more table

Now we can use the parameters from the parameters from the fitted model to predict the
species in the test set. The function augment performs the prediction and adds a new column
called .pred_class to the data frame. Then we can compare the truth with predictions using
a confusion matrix or an accuracy score:

compare_pred <- augment(fit_nb, new_data = pen_test)

compare_pred %>% conf_mat(truth = species, estimate = .pred_class)

Truth
Prediction Adelie Chinstrap Gentoo
Adelie 36 1 0
Chinstrap 0 17 0
Gentoo 0 0 30

compare_pred %>% accuracy(truth = species, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy multiclass 0.988

15.2.2 Breast cancer data

Here is an data set of breast cancer samples, where the classification of each sample is given in
variable Class as either “benign” or “malign”. The other variables contain observations that
we can use to classify the samples.

First, we clean and split the data set:

315

data("breastcancer")
glimpse(breastcancer)

Rows: 699
Columns: 10
$ `Clump Thickness` <int> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, 1~
$ `Uniformity of Cell Size` <int> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3, ~
$ `Uniformity of Cell Shape` <int> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3, ~
$ `Marginal Adhesion` <int> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, 1~
$ `Single Epithelial Cell Size` <int> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, 2~
$ `Bare Nuclei` <int> 1, 10, 2, 4, 1, 10, 10, 1, 1, 1, 1, 1, 3~
$ `Bland Chromatin` <int> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, 3~
$ `Normal Nucleoli` <int> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, 1~
$ Mitoses <int> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1~
$ Class <fct> benign, benign, benign, benign, benign, ~

cancer_clean <- breastcancer %>% drop_na()

Put 3/4 of the data into the training set
can_split <- initial_split(cancer_clean, prop = 3/4)

Create data frames for the two sets:
can_train <- training(can_split)
can_test <- testing(can_split)

Next, we can use the same model specification nb_spec, define a new recipe and apply it to
the data, and fit the model:

can_recipe <-
recipe(Class ~ ., data = can_train) %>%
update_role(`Uniformity of Cell Shape`, `Uniformity of Cell Size`, `Bland Chromatin`, new_role = "ID")

can_workflow_nb <- workflow() %>%
add_model(nb_spec) %>%
add_recipe(can_recipe)

can_fit_nb <- can_workflow_nb %>% fit(can_train)

Predict the classification of samples in the test set and compare the truth with predictions
using a confusion matrix and an accuracy score:

316

compare_pred <- augment(can_fit_nb, new_data = can_test)

compare_pred %>% conf_mat(truth = Class, estimate = .pred_class)

Truth
Prediction benign malignant
benign 109 1
malignant 6 55

compare_pred %>% accuracy(truth = Class, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.959

can_fit_nb %>%
extract_fit_parsnip()

parsnip model object

================================== Naive Bayes ==================================

Call:
naive_bayes.default(x = maybe_data_frame(x), y = y, usekernel = ~FALSE)

Laplace smoothing: 0

A priori probabilities:

benign malignant
0.6425781 0.3574219

317

Tables:

::: Clump Thickness (Gaussian)

Clump Thickness benign malignant
mean 2.930091 7.207650
sd 1.659592 2.485241

::: Marginal Adhesion (Gaussian)

Marginal Adhesion benign malignant
mean 1.3039514 5.6393443
sd 0.7917349 3.2413848

::: Single Epithelial Cell Size (Gaussian)

Single Epithelial Cell Size benign malignant
mean 2.1367781 5.2950820
sd 0.9734979 2.4741139

::: Bare Nuclei (Gaussian)

Bare Nuclei benign malignant
mean 1.355623 7.491803
sd 1.196275 3.130616

::: Normal Nucleoli (Gaussian)

Normal Nucleoli benign malignant
mean 1.2613982 5.5792350
sd 0.9869881 3.3664481

318

... and 1 more table

15.3 Decision Trees

Suppose instead that we represent the classification process as a sequence of binary choices,
that eventually lead to a category. This can be represented by a decision tree, whose internal
nodes are separators of the space of observations (all the values of explanatory variables) that
divide it into regions, and the leaves are the labels of these regions. (Decision trees can also
be used for quantitative response variables, but we will focus on classification.) For example,
here is a a decision tree for accepting a job offer:

Figure 15.1: Should you take this job? (from https://365datascience.com/tutorials/machine-
learning-tutorials/decision-trees)

Building a decision tree for classification happens by sequential splitting the space of obser-
vations, starting with the decision that gives the most bang for the buck. Let us define the
quality of the split into 𝑀 region by calculating how many observations in that regions ac-
tually belong to each category 𝑘. The Gini index (or impurity) is defined as the product of

319

the probability of an observation (in practice, the fraction of observations in the training set)
being labeled correctly with label 𝑘 (𝑝𝑘) times the probability of it being labeled incorrectly
(1 − 𝑝𝑘), summed over all the labels 𝑘:

𝐺 = ∑
𝑘

(1 − 𝑝𝑘)𝑝𝑘

Alternatively, one can use the Shannon information or entropy measure:

𝑆 = − ∑
𝑘

𝑝𝑘𝑙𝑜𝑔(𝑝𝑘)

Notice that both measures are smallest when 𝑝𝑘 is close to 1 or 0, so they both tell the
same story for a particular region: if (almost) all the points are points are either classified or
incorrectly, these measures are close to 0.

Figure 15.2: Recursive splitting of a two-dimensional set of observations (from
https://jakevdp.github.io/PythonDataScienceHandbook/)

One of these measures is used to create the sequential splits in the training data set. The
biggest problem with this decision tree method is that it’s a greedy algorithm that easily leads
to overfitting: as you can see in the figure above, it can create really complicated regions in
the observation space that may not correspond to meaningful distinctions.

15.3.1 Penguin data

Define the model specifications for decision trees:

tree_spec <- decision_tree() %>%
set_engine("rpart") %>%
set_mode("classification")

Create a recipe, apply the model and fit it on the training set:

320

pen_recipe <-
recipe(species ~ ., data = pen_train) %>%
update_role(island, new_role = "ID")

pen_workflow_tree <- workflow() %>%
add_model(tree_spec) %>%
add_recipe(pen_recipe)

fit_tree <- pen_workflow_tree %>% fit(pen_train)

Predict the classification for the test set and validate the predictions:

compare_pred <- augment(fit_tree, new_data = pen_test)

compare_pred %>% conf_mat(truth = species, estimate = .pred_class)

Truth
Prediction Adelie Chinstrap Gentoo
Adelie 35 1 0
Chinstrap 1 17 1
Gentoo 0 0 29

compare_pred %>% accuracy(truth = species, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy multiclass 0.964

Make a plot of the best-fit decision tree:

fit_tree %>%
extract_fit_engine() %>%
rpart.plot()

321

flipper_length_mm < 207

bill_length_mm < 43 bill_depth_mm >= 17

Adelie
.44 .20 .36

100%

Adelie
.70 .30 .00

62%

Adelie
.96 .04 .00

44%

Chinstrap
.09 .91 .00

18%

Gentoo
.01 .04 .95

38%

Chinstrap
.14 .57 .29

3%

Gentoo
.00 .00 1.00

35%

yes no

Adelie
Chinstrap
Gentoo

15.3.2 Breast cancer data

Using the same model tree_spec, create a recipe, apply the model and fit it on the training
set:

can_recipe <-
recipe(Class ~ ., data = can_train) %>%
update_role(`Uniformity of Cell Shape`, `Uniformity of Cell Size`, `Bland Chromatin`, new_role = "ID")

can_workflow_tree <- workflow() %>%
add_model(tree_spec) %>%
add_recipe(can_recipe)

fit_tree <- can_workflow_tree %>% fit(can_train)

Predict the classification for the test set and validate the predictions:

compare_pred <- augment(fit_tree, new_data = can_test)

compare_pred %>% conf_mat(truth = Class, estimate = .pred_class)

Truth
Prediction benign malignant

322

benign 111 4
malignant 4 52

compare_pred %>% accuracy(truth = Class, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.953

Make a plot of the best-fit decision tree:

fit_tree %>%
extract_fit_engine() %>%
rpart.plot()

Bare Nuclei < 2.5

Single Epithelial Cell Size < 3.5

Marginal Adhesion < 3.5

Clump Thickness < 4.5

Bare Nuclei < 5.5

benign
0.36

100%

benign
0.06
63%

benign
0.01
58%

malignant
0.68
5%

benign
0.33
2%

malignant
1.00
3%

malignant
0.86
37%

malignant
0.53
9%

benign
0.16
5%

malignant
0.95
4%

malignant
0.97
28%

yes no

15.4 Random Forests

Overfitting usually results from modeling meaningless noise in the data instead of real differ-
ences. This gave rise to the idea to “shake up” the algorithm and see if the splits it produces
are robust if the training set is different. In fact, let’s use multiple trees and look at what the
consensus of the ensemble can produce. This approach is called bagging, which makes use of

323

an random ensemble of parallel classifiers, each of which over-fits the data, it combines the
results to find a better classification. An ensemble of randomized decision trees is known as a
random forest.

Essentially, the process is as follows: use random sampling from the data set (bootstrapping)
to generate different training sets and train different decision trees on each. Then for each
observation, find its consensus classification among the whole ensemble; that is, how does the
plurality of the trees classify it.

Since each data point is left out of a number of trees, one can estimate an unbiased error of
classification by computing the “out-of-bag” error: for each observation, used the classification
produced by all the trees that did not have this one points in the bag. This is basically a built-in
cross-validation measure.

15.4.1 Penguin data

Define the model specification for random forests:

rf_spec <- rand_forest(mtry = 4) %>%
set_engine("ranger") %>%
set_mode("classification")

Create a recipe, apply the model and fit it on the training set:

rf_recipe <-
recipe(species ~ ., data = pen_clean) %>%
update_role(island, new_role = "ID")

pen_workflow_rf <- workflow() %>%
add_model(rf_spec) %>%
add_recipe(pen_recipe)

fit_rf <- pen_workflow_rf %>% fit(pen_clean)

Predict the classification for the test set and validate the predictions:

compare_pred <- augment(fit_rf, new_data = pen_clean)

compare_pred %>% conf_mat(truth = species, estimate = .pred_class)

Truth
Prediction Adelie Chinstrap Gentoo

324

Adelie 144 1 0
Chinstrap 2 67 0
Gentoo 0 0 119

compare_pred %>% accuracy(truth = species, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy multiclass 0.991

Calculate the “last fit” of the entire data set:

last_rf <-
rand_forest(mtry = 4, trees = 100) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")

the last workflow
last_workflow <-
pen_workflow_rf %>%
update_model(last_rf)

the last fit
set.seed(3)
last_rf_fit <-
last_workflow %>%
last_fit(pen_split)

Plot the importance measures of different variables:

last_rf_fit %>%
collect_metrics()

A tibble: 2 x 4
.metric .estimator .estimate .config
<chr> <chr> <dbl> <chr>

1 accuracy multiclass 0.964 Preprocessor1_Model1
2 roc_auc hand_till 0.999 Preprocessor1_Model1

325

last_rf_fit %>%
pluck(".workflow", 1) %>%
pull_workflow_fit() %>%
vip(num_features = 20)

year

sex

body_mass_g

bill_depth_mm

bill_length_mm

flipper_length_mm

0 20 40 60
Importance

15.4.2 Cancer data

Using the same model rf_spec, create a recipe, apply the model and fit it on the training
set:

can_rf_recipe <-
recipe(Class ~ ., data = cancer_clean)

can_workflow_rf <- workflow() %>%
add_model(rf_spec) %>%
add_recipe(can_rf_recipe)

fit_rf <- can_workflow_rf %>%
fit(cancer_clean)

Predict the classification for the test set and validate the predictions:

326

compare_pred <- augment(fit_rf, new_data = can_test)

compare_pred %>% conf_mat(truth = Class, estimate = .pred_class)

Truth
Prediction benign malignant
benign 113 0
malignant 2 56

compare_pred %>% accuracy(truth = Class, estimate = .pred_class)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.988

Calculate the “last fit” of the entire data set:

last_rf <-
rand_forest(mtry = 4, trees = 100) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")

the last workflow
last_workflow <-
can_workflow_rf %>%
update_model(last_rf)

the last fit
set.seed(3)
last_rf_fit <-
last_workflow %>%
last_fit(can_split)

Plot the importance measures of different variables:

last_rf_fit %>%
collect_metrics()

327

A tibble: 2 x 4
.metric .estimator .estimate .config
<chr> <chr> <dbl> <chr>

1 accuracy binary 0.988 Preprocessor1_Model1
2 roc_auc binary 0.996 Preprocessor1_Model1

last_rf_fit %>%
pluck(".workflow", 1) %>%
pull_workflow_fit() %>%
vip(num_features = 20)

Mitoses

Normal Nucleoli

Marginal Adhesion

Clump Thickness

Single Epithelial Cell Size

Bland Chromatin

Uniformity of Cell Shape

Bare Nuclei

Uniformity of Cell Size

0 20 40 60 80
Importance

15.5 References

1. Introduction to Statistical Learning

2. Introcution to Statistical Learning Labs with Tidymodels

3. Tidy models tutorial

4. How Decision Trees Work

5. Python Data Science Handbook

6. Visualization of Random Forests

328

https://www.statlearning.com/
https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/
https://www.tidymodels.org/start/case-study/
https://dataaspirant.com/how-decision-tree-algorithm-works/
https://jakevdp.github.io/PythonDataScienceHandbook/05.08-random-forests.html
https://towardsdatascience.com/rfviz-an-interactive-visualization-package-for-random-forests-in-r-8fb71709c8bf

16 Monte Carlo methods

The Monte Carlo casino refused to admit me until I was properly dressed so I went
and found my stockings, and then came back and lost my shirt.

— Dorothy Parker

16.1 Idea

In statistics, Monte Carlo methods are computational methods in which repeated, random
sampling is used for estimation or hypothesis testing.

They are often used when:

• We have small data sizes, and thus (asymptotic) convergence to known distribution is
not known.

• We want to apply a permutation test, but there are too many permutations.
• Build posterior distributions from Bayesian calculations.
• Determine confidence intervals for parameters that are difficult to calculate.
• Test hypotheses on data that are not distributed according to convenient, well-studied

distributions.
• etc.

16.2 History

Though examples of what we would call today Monte Carlo methods can be dated back cen-
turies, the idea was formalized by scientists working on the Manhattan Project, and especially
Stanislaw Ulam (the inventor of MCMC; the program stan is named after him), Johnny Von
Neumann and Nicholas Metropolis (who came up with the name Monte Carlo, a reference to
the famous casino).

These methods have found applications in all the sciences, and beyond.

329

16.3 Bootstrapping

The idea is to build confidence intervals for (complex) metrics by repeatedly re-sampling the
data (with replacement), thereby mimicking the sampling process. This method was pio-
neered by Bradley Efron (“Bootstrap Methods: Another Look at the Jackknife” Ann. Statist.
1979).

The basic algorithm is as follows:

• We have a data set of size 𝑛, and we want to compute a certain metric on the data.
• We iteratively re-sample the data (with repetition), each time obtaining a sample of size

𝑛
• We compute the metric for the re-sampled data sets, thus building a distribution for the

metric.
• We can compute statistics on the distribution (e.g., percentiles, confidence intervals, etc.)

16.3.1 Example 1

We are going to use data on number of bears found per quadrat, found in a small island in
Foxe Basin, Canada, which is occupied by a high density of bears during the summer ice-free
season. The data, collected using satellite imagery, is taken from Stapleton S. et al. (“Polar
Bears from Space: Assessing Satellite Imagery as a Tool to Track Arctic Wildlife” PLoS ONE
2014), and the analysis follows the presentation in Fieberg, J.D. et al. (“Resampling-based
methods for biologists” PeerJ 2020).

Let’s load the data:

bears <- read.csv("data/bears.csv")
num_bears <- bears$Num.Bears

and compute the mean number of bears per quadrat

mean(num_bears)

[1] 0.5609756

and count the number of quadrats

length(num_bears)

[1] 164

330

What should we expect for the mean if we had access to only 75 quadrats? We can bootstrap
the data? we can approach this by repeatedly sampling 75 quadrats out of the 164 and measure
the distribution of the means:

sample_means <- replicate(1000, mean(sample(num_bears, 75)))
this is the average of the sampled means
mean(sample_means)

[1] 0.5610533

typically, confidence intervals are taken to be +/- 2 * sd/sqrt(n)
confidence <- mean(sample_means) + c(-2, 2) * sd(sample_means)/sqrt(75)
confidence

[1] 0.5432567 0.5788500

16.4 Example 2

Another example, taken from Fieberg et al.

[Consider the] data collected by the Minnesota Department of Natural Resources to
explore the potential impact of changing fishing regulations on the size distribution
of northern pike (Esox lucius) in Medicine Lake, an approximately 460-acre lake in
Beltrami County, MN. In 1989, the MN DNR instituted a slot limit of 22–30 inches
in this lake (i.e., all caught fish within this size interval had to be released). We
consider length data from 73 and 81 fish collected in trap nets in 1988 and 1993,
respectively (before and after the fishing regulation was put in place). Importantly,
these data come from only one lake, and many other factors may have changed
between 1988 and 1993. Therefore, we must be cautious when interpreting any
changes in the distribution of fish sizes (i.e., attributing the cause of length changes
to the management regulation or generalizing results to other lakes). Nonetheless,
we can ask, “How much did fish length, on average, change between 1988 and 1993
in Medicine Lake?” To address this question, we estimate the difference in the
mean length of fish in the two samples. We also quantify our uncertainty in this
estimated difference in means, recognizing that we would get a different estimate
if we could go back and collect other samples of fish in those 2 years.

Let’s read the data

331

dt <- read.csv("data/Pikedata.csv")

And divide it by year

y1988 <- dt$length.inches[dt$year == 1988]
y1993 <- dt$length.inches[dt$year == 1993]
print(mean(y1993) - mean(y1988))

[1] 2.581708

Showing that fish in 1993 were 2.6 inches longer. Because we caught a small number of fish
(about 80) per year, we can build a distribution for the difference by bootstrapping

sample_mean <- function(x){
mean(sample(x, length(x), replace = TRUE))

}

diff_sample <- replicate(1000, sample_mean(y1993) - sample_mean(y1988))
hist(diff_sample)
abline(v = mean(y1993) - mean(y1988))

Histogram of diff_sample

diff_sample

F
re

qu
en

cy

0 1 2 3 4 5

0
10

0
20

0
30

0

332

16.5 Hypothesis testing using Monte Carlo

These methods are often used when we can easily sample from the null model (i.e., a model
encoding the null hypothesis), and we want to compute some statistics on the observed data v.
the randomized data. We can associate an “empirical” p-value to the test, by measuring how
often the statistics on the randomized data exceeds that measured for the empirical data.

16.5.1 Example: penguin breeding pairs

This example is taken from Graeme Ruxton & Markus Neuhäuser (“Improving the reporting
of P-values generated by randomization methods”, Methods in Eco & Evol 2013).

Massaro & Blair (New Zealand J. Ecol, 2003) wanted to compare the numbers
of breeding yellow-eyed penguins (Megadyptes antipodes) on Stewart Island off
New Zealand with those on nearby islands, which (unlike Stewart Island) had
no feral cats (Felis catus) that are potential predators of the penguins. They
visited 19 breeding colonies on Stewart island and recorded the following numbers
of breeding pairs at them {7,3,3,7,3,7,3,10,1,7,4,1,3,2,1,2,9,4,2}, and 10 colonies on
nearby islands where the recorded numbers of pairs were {15,32,1,13,14,11,1,3,2,7}.
Thus, in total, 178 breeding pairs were observed; on Stewart Island, the mean
colony size (±SE) was 4.2 (±0.6), whereas on other islands, it was 9.9 (±3). We
want to explore by randomization whether this sample gives reason for rejecting
the null hypothesis that each pair chooses a breeding site (independently) without
regard to the presence of cats. […] Given the noticeably lower variability among
colony sizes on Stewart Island, an appropriate test statistic to adopt might be the t
statistic for samples with unequal variance (Ruxton 2006). For each randomization,
each of the 178 pairs independently chooses one of the 29 colonies (each with equal
probability).

In a nutshell, the idea is to

1. measure the t statistics for the observed data
2. repeatedly generate randomized data by assigning the 178 pairs to the colonies at random
3. measure the t statistics for the randomized data, forming a distribution
4. compute the (empirical) probability of finding a value for the randomized data that is

larger than that found for the observed data

set.seed(1)
original <- c(c(7,3,3,7,3,7,3,10,1,7,4,1,3,2,1,2,9,4,2), # Stewart Island

c(15,32,1,13,14,11,1,3,2,7) # other island
)

compute t-stat for original data [first 19 are one island, the rest are the other island]

333

tobs <- abs(t.test(original[1:19], original[-(1:19)])$statistic)
now randomized the data and record the number of times we've found a value larger than the
one observed for the empirical data
num_rand <- 999
p_value <- 0
for (i in 1:num_rand){
randomized <- table(sample(1:29, 178, replace = TRUE))
trnd <- abs(t.test(randomized[1:19], randomized[-(1:19)])$statistic)
if (trnd >= tobs) p_value <- p_value + 1

}
print(p_value)

[1] 61

In this case, we have observed a larger (or equal) value 61 times out of 999 randomizations.
The last step is to divide this number by the number of simulations, to obtain a probability.
There are two ways to do this:

𝑝 = ∑𝑖 𝐼(𝑥𝑖 ≥ 𝑋)
𝑛

where 𝑥𝑖 is the statistics for randomization 𝑖, 𝑋 is the statistics for the observed data, and 𝑛
is the number of randomizations. In this case:

p_value / 999

[1] 0.06106106

Alternatively, and slightly more conservatively, we can assume that the empirical data was
also sampled from the null model, in which case:

𝑝 = 1 + ∑𝑖 𝐼(𝑥𝑖 ≥ 𝑋)
𝑛 + 1

yielding:

(1 + p_value) / 1000

[1] 0.062

334

The difference between the two approaches is largest when the probability of observing a large
value in the randomizations is very small (in one case we would get 0, in the other 1/(𝑛 + 1)).
Ruxton & Neuhäuser recommend stating the choice explicitly, to improve replicability. A
discussion of this issue in the field of genetics can be found in North et al. (“A Note on the
Calculation of Empirical P Values from Monte Carlo Procedures”, Am J Hum Genet 2002);
Gandy (“Sequential implementation of Monte Carlo Tests with uniformly bounded resampling
risk” Journal of the American Statistical Association 2000) provides an algorithm to compute
confidence intervals on the empirical p-value.

Naturally, the larger the number of simulations, the more accurate the result. The rule of
thumb is that one would need about 104 randomizations to be confident in the first two
decimals.

16.6 Randomizing binary tables (bipartite networks)

Often, biological data is represented by binary, rectangular tables. For example:

• Rows are sampling sites, and columns are species; a 1 marks the presence of a species at
a site, and a 0 its absence.

• Rows are individuals and columns are SNPs.
• Rows are species and columns are traits.
• Rows are genes and columns are times; a 1 marks genes that are significantly over-

expressed at a given time.
• …

These data can be represented as either a binary, rectangular matrix, or equivalently as a
bipartite network.

One of the most salient feature of such a table is given by its marginal totals (row/col sums,
or the degree of the nodes in the bipartite network). The marginal totals/degrees greatly
influence the network/table structure. For example, in extreme cases there is only one binary
table/network with a given set of degrees.

A <- matrix(c(
1,1,1,1,
1,1,1,0,
1,1,1,0,
1,1,0,0,
1,0,0,0

), 5, 4, byrow = TRUE)
B <- matrix(c(
1,1,1,1,

335

1,1,1,0,
1,1,0,1,
1,1,0,0,
1,0,0,0

), 5, 4, byrow = TRUE)
A

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 1 0
[3,] 1 1 1 0
[4,] 1 1 0 0
[5,] 1 0 0 0

B

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 1 0
[3,] 1 1 0 1
[4,] 1 1 0 0
[5,] 1 0 0 0

16.6.1 Randomizing the network: checkerboard swapping

If we can identify two rows and two columns such that the induced submatrix is

a b
A 0 1
B 1 0

or

a b
A 1 0
B 0 1

we can swap the submatrix for the other, without altering the row/col marginal totals.

336

16.6.2 Randomizing the network: curveball

The same idea can be generalized. One fun way to think about this, introduced by Strona et
al. (“A fast and unbiased procedure to randomize ecological binary matrices with fixed row
and column totals” Nature Comm 2014) is to consider children exchanging baseball cards. In
the example above, the cards are the columns and the children are the rows, and two children
exchange one card (for example, A does not have card b, and B does not have card a; if
they exchange them the number of cards per child and the number of children per card are
unchanged).

Take two rows of a binary matrix:

a b c d e f g
A 0 1 0 1 1 1 0
B 1 1 1 0 1 0 1

The intersection set 𝐴 ∩ 𝐵 is given by {a,c,d,f,g}, with A contributing two “cards” (d, f) and
B contributing three (a,c,g). If we pool all the cards in the intersection, and then A picks two
at random, and B the remaining three, the marginals are unchanged.

Clearly, the “mixing” of the table is faster, because we can trade several cards at once. It
can be proven that, after a sufficiently large number of trades, the resulting table/network is
sampled uniformly from the set of tables/networks with the given marginal totals.

For example, create a random binary table, and shuffle it keeping the marginal totals:

set.seed(1)
source("data/curveball.R")
create a random table
A <- matrix((runif(10 * 7) < 0.5) * 1, 10, 7)
this are the the marginal totals
rowSums(A)

[1] 4 4 3 5 3 4 4 3 2 4

colSums(A)

[1] 4 5 7 5 2 7 6

337

randomize the matrix
B <- curveball.run(A, 1000)

16.6.3 Example: Darwin’s finches

Jared Diamond proposed that the presence/absence of species on islands would be influenced
by competition: bird species would try avoiding overlapping with their competitors, and would
tend to co-occur with species they are not competing with. While this idea generated a very
contentious debate, here we are going to test this hypothesis using the famous Darwin’s finches
(see Weiner, The Beak of the Finch: A Story of Evolution in Our Time 1994), using a metric
proposed by Roberts and Stone. Take 𝐴 to be a matrix with the 𝑚 finch species as rows,
and 𝑛 islands as columns; a 1 marks the presence of a finch species on an island. The matrix
𝑆 = 𝐴𝐴𝑇 counts the number of islands in which species co-occur. Naturally, the diagonal
reports the number of islands in which a finch species is found.

Roberts and Stone proposed to measure:

̄𝑆2 = 1
𝑚(𝑚 − 1) ∑

𝑖≠𝑗
𝑆2

𝑖𝑗

This number is small if finch species do not co-occurr often, and is high when some species
always co-occur. We are going to use the curveball algorithm to randomize the species data,
and then compute an empirical p value for the probability of observing this result by chance:

finches <- as.matrix(read.csv("data/finches.csv"))
compute mean squared overlap, excluding self
index proposed by Roberts and Stone, Oecologia 1990
mean_sq_ol <- function(M){
M2 <- (M) %*% t(M) # number of co-occurrences
diag(M2) <- NA # no self
return(mean(M2^2, na.rm = TRUE))

}
observed value
obs <- mean_sq_ol(finches)
randomizations
nrand <- 249
pval <- 0
for (i in 1:nrand){
tmp <- mean_sq_ol(curveball.run(finches, 250))
if (tmp >= obs) { # testing "partitioning/competition"

pval <- pval + 1

338

}
}
print((pval + 1) / (nrand + 1))

[1] 0.004

we conclude that our null model (finches choose random islands, considering that some fiches
are more widespread than others, and that some islands harbor a larger number of species)
would not generate such a high value by chance with high probability, and thus we reject the
hypothesis.

339

17 Time series: modeling and forecasting

library(tsibble)
library(tsibbledata)
library(lubridate)
library(tidyverse)
library(fable)
library(feasts)
library(forecast)
library(fpp2)

Prediction is difficult, especially about the future.

— Niels Bohr (apocryphally)

17.1 Goals:

• Use current tools for handling and visualizing time series
• Calculate auto- and cross-correlations of time series
• Decompose time series into components
• Use linear regression methods for fitting and forecasting

17.2 Time series format and plotting

A time series is a special data set where each observation has an associated time measurement.
There is a special R structure for storing and operating on time series, called ts, as illustrated
here:

births <- scan("http://robjhyndman.com/tsdldata/data/nybirths.dat")
birthstimeseries <- ts(births, frequency = 12, start = c(1946, 1))
birthstimeseries

340

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
1946 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227
1947 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110
1948 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142
1949 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907
1950 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252
1951 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110
1952 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199
1953 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462
1954 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379
1955 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784
1956 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136
1957 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484
1958 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945
1959 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012

Nov Dec
1946 21.672 21.870
1947 21.759 22.073
1948 21.059 21.573
1949 21.519 22.025
1950 22.084 22.991
1951 22.964 23.981
1952 23.162 24.707
1953 25.246 25.180
1954 24.712 25.688
1955 25.693 26.881
1956 26.291 26.987
1957 26.634 27.735
1958 25.912 26.619
1959 26.992 27.897

This reads in a data set recording the number of births per month in New York City, from
1946 to 1958 (in thousands of births?) To create the time series, we had to give the function
the frequency, or the number of time points in a year, and the starting value as a vector
assigned to start = c(1946, 1), the first element is the year and the second the month.

There are several other specialized data structures for handling time series. We will
use one from a new set of R packages called tidyverts that is called a tsibble.
https://tsibble.tidyverts.org/ The tsibbledata package contains several time series
data sets and we will load two below: olympic_running, containing the Olympic winning
times in different running events, and pelt, containing the classic data of the number of Lynx
and Hare pelts sold in Canada in the 19th and early 20th centuries:

341

data("olympic_running")
glimpse(olympic_running)

Rows: 312
Columns: 4
Key: Length, Sex [14]
$ Year <int> 1896, 1900, 1904, 1908, 1912, 1916, 1920, 1924, 1928, 1932, 193~
$ Length <int> 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100~
$ Sex <chr> "men", "men", "men", "men", "men", "men", "men", "men", "men", ~
$ Time <dbl> 12.00, 11.00, 11.00, 10.80, 10.80, NA, 10.80, 10.60, 10.80, 10.~

data("pelt")
glimpse(pelt)

Rows: 91
Columns: 3
$ Year <dbl> 1845, 1846, 1847, 1848, 1849, 1850, 1851, 1852, 1853, 1854, 1855,~
$ Hare <dbl> 19580, 19600, 19610, 11990, 28040, 58000, 74600, 75090, 88480, 61~
$ Lynx <dbl> 30090, 45150, 49150, 39520, 21230, 8420, 5560, 5080, 10170, 19600~

You can see that tsibbles contain multiple variables, one of which is the time variable and is
called the index, and one or more others are denoted as key, which are variables that identify
the observations but are not changing in time. For example, in the Olympic times data set,
the Sex and the Length are the keys, because they are not measurement that we’re plotting
over time. In the pelt data set, there is no key variable (but you could make a longer tsibble
with species as the key variable if you wanted.)

17.2.1 Visualizing the data

The most straightforward way of visualizing time series is using a time plot, which can be
created using autoplot:

autoplot(birthstimeseries) +
ggtitle("Number of births in NYC") +
ylab("Births (thousands)") +
xlab("Year")

342

20.0

22.5

25.0

27.5

30.0

1950 1955 1960
Year

B
ir

th
s

(t
ho

us
an

ds
)

Number of births in NYC

autoplot works best with timeseries objects, so to use it with a tsibble you can convert it to
a ts first, like this:

autoplot(as.ts(pelt)) +
ggtitle("Lynx and hare pelts") +
ylab("Number of pelts") +
xlab("Year")

343

0

50000

100000

150000

1860 1880 1900 1920
Year

N
um

be
r

of
 p

el
ts

series

Hare

Lynx

Lynx and hare pelts

One can also use ggplot directly, for example to plot a faceted graph of the olympic times for
different years:

olympic_running %>% as_tibble %>%
ggplot(aes(x=Year, y = Time, colour = Sex)) +
geom_line() +
facet_wrap(~ Length, scales = "free_y")

344

10000

800 1500 5000

100 200 400

18901920195019802010

18901920195019802010 18901920195019802010

42.5
45.0
47.5
50.0
52.5

800

850

900

20
21
22
23
24

220

240

260

10.0
10.5
11.0
11.5
12.0

100
110
120
130

1700

1800

1900

Year

T
im

e

Sex

men

women

17.3 Decomposition of time series

As you can see from the plots above, time series are often a combination of different time-
dependent processes and it is often useful to think about them separately. One can distinguish
three types of time variation in time series:

• Seasonality A seasonal pattern occurs when a time series is affected by sea-
sonal factors such as the time of the year or the day of the week. Seasonality
is always of a fixed and known frequency.

• Trend A trend exists when there is a long-term increase or decrease in the
data. It does not have to be linear. Sometimes we will refer to a trend as
“changing direction”, when it might go from an increasing trend to a decreas-
ing trend.

• Cyclic A cycle occurs when the data exhibit rises and falls that are not of
a fixed frequency. In economics, these fluctuations may by due to economic
conditions and are often related to the “business cycle”.

17.3.1 Decomposition of time series

There are two main types of decompositions of time series: additive and multiplicative. Let
us call 𝑋𝑡 the time series data, 𝑇𝑡 the trend (non-periodic component), 𝑆𝑡 the seasonal part

345

(periodic component), and 𝑅𝑡 the remainder.

𝑋𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡

𝑋𝑡 = 𝑇𝑡 × 𝑆𝑡 × 𝑅𝑡

One simple way of removing seasonality and estimating the trend is using the moving average,
that is using 𝑘 points before and 𝑘 points after each point to calculate the trend:

𝑇𝑡 = 1
𝑚

𝑘
∑
𝑖=−𝑘

𝑋𝑡+𝑖

Here 𝑚 is called the order of the moving average and is defined as 𝑚 = 2𝑘 + 1. There is a
useful function ma() that calculates these averages and allows them to be plotted.

m <- 6
s_name <- paste("MA-", m)
autoplot(birthstimeseries, series = "data") +
autolayer(ma(birthstimeseries, m), series = "MA") +
xlab("Time (Year)") + ylab("number of births (thousands)") +
ggtitle("NYC births time series")

Warning: Removed 6 rows containing missing values (`geom_line()`).

20.0

22.5

25.0

27.5

30.0

1950 1955 1960
Time (Year)

nu
m

be
r

of
 b

ir
th

s
(t

ho
us

an
ds

)

series

data

MA

NYC births time series

346

Exercise: Change the moving average window and see if you can make seasonality (periodic-
ity) vanish!

An even order of periodicity requires an asymmetric averaging window, so to create an symmet-
ric average, one can repeat the moving average of order two on the already-averaged data.

17.3.2 Classic decomposition:

Additive decomposition [1]:

1. If m is an even number, compute the trend-cycle component 𝑇𝑡 using a 2×m-MA. If m
is an odd number, compute the trend-cycle component ̂𝑇𝑡 using an m-MA.

2. Calculate the detrended series: 𝑋𝑡 − ̂𝑇𝑡
3. To estimate the seasonal component for each season, average the detrended values for

that season. For example, with monthly data, the seasonal component for March is the
average of all the detrended March values in the data. These seasonal component values
are then adjusted to ensure that they add to zero. The seasonal component is obtained
by stringing together these monthly values, and then replicating the sequence for each
year of data. This gives ̂𝑆𝑡.

4. The remainder component is calculated by subtracting the estimated seasonal and trend-
cycle components: �̂�𝑡 = 𝑋𝑡 − ̂𝑇𝑡 − ̂𝑆𝑡

birthstimeseries %>% decompose(type="additive") %>%
autoplot() + xlab("Year") +
ggtitle("Classic additive decomposition

of the NYC births time series")

347

da
ta

tr
en

d
se

as
on

al
re

m
ai

nd
er

1946 1948 1950 1952 1954 1956 1958 1960

20.0
22.5
25.0
27.5
30.0

22

24

26

28

−2
−1

0
1

−1
0
1

Year

Classic additive decomposition
 of the NYC births time series

This simple classical decomposition has numerous flaws, so better, more modern methods are
preferred. In particular, it assumes a constant seasonal term, it tends to over-estimate the
variation in the trend, it misses data for the first few and last few data points, and can be
sensitive to outliers.

17.3.3 STL decomposition

A more robust method is called the STL decomposition (Seasonal and Trend decomposition
using Loess). To summarize its advantages [1]:

• STL can handle any type of seasonality, not only monthly and quarterly data.
• The seasonal component is allowed to change over time, and the rate of change can be

controlled by the user.
• The smoothness of the trend-cycle can also be controlled by the user.
• It can be robust to outliers (i.e., the user can specify a robust decomposition), so that oc-

casional unusual observations will not affect the estimates of the trend-cycle and seasonal
components. They will, however, affect the remainder component.

birthstimeseries %>% stl(t.window=13, s.window="periodic", robust=TRUE) %>%
autoplot()

348

da
ta

tr
en

d
se

as
on

al
re

m
ai

nd
er

1946 1948 1950 1952 1954 1956 1958 1960

20.0
22.5
25.0
27.5
30.0

22

24

26

28

−2
−1

0
1

−2
−1

0
1
2

Time

Exercise: Apply the two decomposition methods to the pelt time series data.

17.4 Relationships within and between time series

17.4.1 Visualizing correlation between different variables

The following data set contains the number of visitors (visitor nights) on a quarterly basis for
five regions of New South Wales, Australia:

autoplot(visnights[,1:5]) +
ylab("Number of visitor nights each quarter (millions)")

349

2.5

5.0

7.5

10.0

2000 2005 2010 2015
Time

N
um

be
r

of
 v

is
ito

r
ni

gh
ts

 e
ac

h
qu

ar
te

r
(m

ill
io

ns
)

series

NSWMetro

NSWNthCo

NSWSthCo

NSWSthIn

NSWNthIn

One simple question is whether different variables are related to each other. One simple way is
to calculate the Pearson correlation between different time series, called the cross-correlation
(where �̄� stands for the mean of X and Var(𝑋) stands for the variance of 𝑋):

Cor(𝑋, 𝑌) = ∑𝑡(�̄� − 𝑋𝑡)(̄𝑌 − 𝑌𝑡)
√Var(𝑋)Var(𝑌)

In a data set with multiple variables it can be handy to examine the cross-correlations between
all pairs between them. Here’s a convenient function to both calculate and visualize it for
multiple variables, in this case the hotel visitor nights for the 5 different regions of NSW. The
plot below show the scatter plots of all the pairs of time series against each other, along with
the respective correlation coefficients:

head(visnights)

NSWMetro NSWNthCo NSWSthCo NSWSthIn NSWNthIn QLDMetro QLDCntrl
1998 Q1 9.047095 8.565678 5.818029 2.679538 2.977507 12.106052 2.748374
1998 Q2 6.962126 7.124468 2.466437 3.010732 3.477703 7.786687 4.040915
1998 Q3 6.871963 4.716893 1.928053 3.328869 3.014770 11.380024 5.343964
1998 Q4 7.147293 6.269299 2.797556 2.417772 3.757972 9.311460 4.260419
1999 Q1 7.956923 9.493901 4.853681 3.224285 3.790760 12.671942 4.186113
1999 Q2 6.542243 5.401201 2.759843 2.428489 3.395284 9.582965 4.237806

350

QLDNthCo SAUMetro SAUCoast SAUInner VICMetro VICWstCo VICEstCo
1998 Q1 2.137234 2.881372 2.591997 0.8948773 7.490382 2.4420048 3.381972
1998 Q2 2.269596 2.124736 1.375780 0.9792509 5.198178 0.9605047 1.827940
1998 Q3 4.890227 2.284870 1.079542 0.9803289 5.244217 0.7559744 1.351952
1998 Q4 2.621548 1.785889 1.497664 1.5094343 6.274246 1.2716040 1.493415
1999 Q1 2.483203 2.293873 2.247684 0.9635227 9.187422 2.3850583 2.896929
1999 Q2 3.377830 2.197418 1.672802 0.9968803 4.992303 1.3288638 1.547901

VICInner WAUMetro WAUCoast WAUInner OTHMetro OTHNoMet
1998 Q1 5.326655 3.075779 3.066555 0.6949954 3.437924 2.073469
1998 Q2 4.441119 2.154929 3.334405 0.5576796 2.677081 1.787939
1998 Q3 3.815645 2.787286 4.365844 1.0061844 3.793743 2.345021
1998 Q4 3.859567 2.752910 4.521996 1.1725514 3.304231 1.943689
1999 Q1 4.588755 3.519564 3.579347 0.3981829 3.510819 2.165838
1999 Q2 4.070401 3.160430 3.408533 0.5960182 2.871867 1.803940

GGally::ggpairs(as.data.frame(visnights[,1:5]))

Registered S3 method overwritten by 'GGally':
method from
+.gg ggplot2

Corr:

0.688***

Corr:

0.701***

Corr:

0.883***

Corr:

0.057

Corr:

0.005

Corr:

−0.080

Corr:

0.095

Corr:

0.034

Corr:

−0.029

Corr:
0.366**

NSWMetro NSWNthCo NSWSthCo NSWSthIn NSWNthIn N
S

W
M

etroN
S

W
N

thC
oN

S
W

S
thC

oN
S

W
S

thIn
N

S
W

N
thIn

5 6 7 8 9 6 8 10 2 3 4 5 6 2.0 2.5 3.0 3.5 2.5 3.0 3.5

0.0
0.1
0.2
0.3
0.4

6

8

10

2
3
4
5
6

2.0
2.5
3.0
3.5

2.5
3.0
3.5

351

However, sometimes the straightforward correlation may miss or underestimate a relationship
that is obviously there, but with a delay. Here is the Lynx and Hare variables from the pelts
data set correlated with each other:

head(pelt)

A tsibble: 6 x 3 [1Y]
Year Hare Lynx
<dbl> <dbl> <dbl>

1 1845 19580 30090
2 1846 19600 45150
3 1847 19610 49150
4 1848 11990 39520
5 1849 28040 21230
6 1850 58000 8420

GGally::ggpairs(pelt[,2:3])

Corr:

0.312**

Hare Lynx

H
are

Lynx

0 50000 100000 1500000 20000 40000 60000 80000

0.0e+00

3.0e−06

6.0e−06

9.0e−06

1.2e−05

0

20000

40000

60000

80000

The correlation coefficient is about 0.3, but it appears that the relationship should be stronger
than that from the plots. The function CCF from feasts package calculates correlations for a
pair of variables that are shifted against each other (lagged) and here is the resulting plot:

352

pelt %>%
CCF(Lynx, Hare, lag_max = 8) %>%
autoplot()

−0.6

−0.3

0.0

0.3

−8 −4 0 4 8
lag [1Y]

cc
f

You can see the non-shifted correlation of about 0.3 at lag of 0, but the correlation is about 2
times higher when the series is shifted by 1 or 2 years, as suggested by the time plots of the
series.

17.4.2 Autocorrelation

Just as we saw for cross-correlations, a time series can be correlated against itself shifted in
time by some set amount, also called lagged. We can plot the lagged correlations for different
visitor

visnights[,1]

Qtr1 Qtr2 Qtr3 Qtr4
1998 9.047095 6.962126 6.871963 7.147293
1999 7.956923 6.542243 6.330364 7.509212
2000 7.662491 6.341802 7.827301 9.579562
2001 8.270488 7.240427 6.640490 7.111875

353

2002 6.827826 6.404992 6.615760 7.226376
2003 7.589058 6.334527 5.996748 6.612846
2004 7.758267 6.778836 5.854452 6.200214
2005 7.163830 5.082204 5.673551 6.089906
2006 8.525916 6.569684 5.771059 6.692897
2007 8.158658 5.710082 5.402543 6.803494
2008 7.866269 5.616704 5.886764 5.506298
2009 6.787225 5.361317 4.699350 6.208784
2010 7.148262 4.850217 6.029490 6.238903
2011 7.597468 5.815930 6.183239 5.929030
2012 7.986931 5.307871 6.054112 6.023897
2013 7.028480 5.813450 6.322841 7.101691
2014 7.897316 5.997468 6.033533 7.103398
2015 8.725132 6.995875 6.294490 6.945476
2016 7.373757 6.792234 6.530568 7.878277

visnights_smaller <- window(visnights[,2], start=2000, end = 2010)
gglagplot(visnights_smaller)

lag 7 lag 8 lag 9

lag 4 lag 5 lag 6

lag 1 lag 2 lag 3

5 6 7 8 9 5 6 7 8 9 5 6 7 8 9

5
6
7
8
9

5
6
7
8
9

5
6
7
8
9

Quarter

1

2

3

4

Here the colors indicate the quarter of the variable on the vertical axis, compared with the
shifted (lagged variable on the horizontal axis, and the lines connect points in chronological
order. The relationship is strongly positive at lags 4 and 8, reflecting the strong seasonality in
the data.

354

This suggests that there is a strong similarity between the time series and itself, shifted by
certain time values. This is described by the autocorrelation, which is defined as a function of
the lag 𝑘:

𝑟(𝑘) = ∑𝑇
𝑡=𝑘(�̄� − 𝑋𝑡)(�̄� − 𝑋𝑡−𝑘)

Var(𝑋)

The autocorrelation can be calculated and plotted for our example of the visitation nights in
New South Wales:

ggAcf(visnights_smaller)

−0.5

0.0

0.5

4 8 12 16
Lag

A
C

F

Series: visnights_smaller

gglagplot(pelt$Lynx, lags =12) + ggtitle("Lag plots for the Lynx pelt data")

355

lag 9 lag 10 lag 11 lag 12

lag 5 lag 6 lag 7 lag 8

lag 1 lag 2 lag 3 lag 4

020000400006000080000020000400006000080000020000400006000080000020000400006000080000

0
20000
40000
60000
80000

0
20000
40000
60000
80000

0
20000
40000
60000
80000

25

50

75

Time

Lag plots for the Lynx pelt data

gglagplot(pelt$Hare, lags = 12) + ggtitle("Lag plots for the Hare pelt data")

lag 9 lag 10 lag 11 lag 12

lag 5 lag 6 lag 7 lag 8

lag 1 lag 2 lag 3 lag 4

050000100000150000050000100000150000050000100000150000050000100000150000

0

50000

100000

150000

0

50000

100000

150000

0

50000

100000

150000

25

50

75

Time

Lag plots for the Hare pelt data

In both cases, the lag plots are closest to the diagonal identity line for lag of 9 or 10. This
should be reflected in the autocorrelation plot:

356

ggAcf(pelt$Lynx) + ggtitle("Autocorrelation for the Lynx pelt data")

−0.4

0.0

0.4

0.8

5 10 15
Lag

A
C

F
Autocorrelation for the Lynx pelt data

ggAcf(pelt$Hare) + ggtitle("Autocorrelation for the Hare pelt data")

−0.50

−0.25

0.00

0.25

0.50

5 10 15
Lag

A
C

F

Autocorrelation for the Hare pelt data

357

Notice the periodicity in the autocorrelation, which indicated periodicity in the time series.

Autocorrelation measures the memory of a signal - for example, pure white noise is uncorrelated
with itself even a moment later, and thus has no memory. As such, it is very useful as a measure
of a trend in the data - if the time series has slowly decaying, positive autocorrelation, that
indicates a pronounced trend, while periodicity indicates seasonality in the data.

Exercise: Use the lag and autocorrelation analysis to describe the patterns in the time series
of births in NYC.

17.4.3 Perennial warning: correlations are not causation!

These two data sets, on Australian air passengers and rice production in Guinea, have a very
strong positive correlation:

aussies <- window(ausair, end=2011)
fit <- tslm(aussies ~ guinearice)
summary(fit)

Call:
tslm(formula = aussies ~ guinearice)

Residuals:
Min 1Q Median 3Q Max

-5.9448 -1.8917 -0.3272 1.8620 10.4210

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.493 1.203 -6.229 2.25e-07 ***
guinearice 40.288 1.337 30.135 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.239 on 40 degrees of freedom
Multiple R-squared: 0.9578, Adjusted R-squared: 0.9568
F-statistic: 908.1 on 1 and 40 DF, p-value: < 2.2e-16

However, notice that the residuals indicate a strong trend, which violates the assumptions of
linear regression.

358

checkresiduals(fit)

−5

0

5

10

1970 1980 1990 2000 2010

Residuals from Linear regression model

−0.25

0.00

0.25

0.50

1 2 3 4 5 6 7 8 9 1011121314
Lag

A
C

F

0

5

10

−10 −5 0 5 10
residuals

df
$y

Breusch-Godfrey test for serial correlation of order up to 8

data: Residuals from Linear regression model
LM test = 28.813, df = 8, p-value = 0.000342

There are a number of fun examples of spurious time series correlations in reference [5].

17.5 Modeling and forecasting

17.5.1 Forecasting using smoothing methods

The package fable is part of the tidyverts bundle and can be used to easily produce fore-
casts using several standard methods, such as ASNAIVE (Seasonal Naive), ETS (exponential
smoothing), and ARIMA (AutoRegressive Integrated Moving Average). The code below com-
pares all three forecast models for the births in NYC data:

359

as_tsibble(birthstimeseries) %>%
model(

ets = ETS(box_cox(birthstimeseries, 0.3)),
arima = ARIMA(log(birthstimeseries)),
snaive = SNAIVE(birthstimeseries)

) %>%
forecast(h = "2 years") %>%
autoplot(birthstimeseries)

20

25

30

35

1950 Jan 1955 Jan 1960 Jan
index

bi
rt

hs
tim

es
er

ie
s

level

80

95

.model

arima

ets

snaive

17.6 References and further reading:

1. Rob J Hyndman and George Athanasopoulos. Forecasting: Principles and Practice
2. Jonathan Cryer and Kung-Sik Chan Time Series Analysis with Applications in R
3. Cross-validation in forecasting
4. Time series nested cross-validation
5. Spurious correlations

360

https://otexts.com/fpp2/
https://mybiostats.files.wordpress.com/2015/03/time-series-analysis-with-applications-in-r-cryer-and-chan.pdf
https://www.r-bloggers.com/time-series-forecast-cross-validation-by-ellis2013nz/
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9
https://www.tylervigen.com/spurious-correlations

	Organization of the class
	Learning goals
	Approach
	Materials
	Acknowledgements

	Refresher
	Goal
	Motivation
	Before we start
	What is R?
	RStudio
	How to write a simple program
	The most basic operation: assignment
	Data types
	Operators and functions
	Getting help
	Data structures

	Reading and writing data
	Conditional branching
	Looping
	Useful Functions
	Packages
	Installing a package
	Loading a package
	Example

	Random numbers
	Writing functions
	Organizing and running code
	Documenting the code using knitr
	Resources

	Visualizing data using ggplot2
	Goal
	Introduction to the Grammar of Graphics
	Basic ggplot2
	Building a well-formed graph
	Scatterplots
	Histograms, density and boxplots
	Scales
	List of aesthetic mappings
	List of geometries
	List of scales
	Themes
	Faceting
	Setting features
	Saving graphs
	Multiple layers
	Try on your own data!
	Resources

	Fundamentals of probability
	Sample spaces and random variables
	Probability axioms
	Probability distributions
	Measures of center: medians and means
	Measures of spread: quartiles and variances
	Data as samples from distributions: statistics
	Law of large numbers
	Central Limit Theorem

	Exploration: misleading means
	References

	Data wrangling
	Goal
	What is data wrangling?
	A new data type, tibble
	Selecting rows and columns
	Creating pipelines using %>%
	Producing summaries
	Summaries by group
	Ordering the data
	Renaming columns
	Adding new variables using mutate
	Data wrangling
	From narrow to wide
	From wide to narrow
	Separate: split a column into two or more
	Separate rows: from one row to many
	Example: brown bear, brown bear, what do you see?
	Resources

	Distributions and their properties
	Objectives:
	Independence
	Conditional probability
	Independence
	Usefulness of independence

	Probability distribution examples (discrete)
	Uniform
	Binomial
	Geometric
	Poisson

	Probability distribution examples (continuous)
	Uniform
	exponential
	normal distribution

	Application of normal distribution: confidence intervals
	Identifying type of distribution in real data

	Hypothesis testing
	Test results vs. the truth
	Types of errors
	Test parameters and p-values
	Multiple comparisons
	Corrections for multiple comparisons
	Two problems with science
	Selective reporting
	P-hacking

	Readings
	How to fool yourself with p-hacking (and possibly get fired!)

	Likelihood and Bayes
	Likelihood and estimation
	likelihood vs. probability
	maximizing likelihood
	discrete probability distributions
	continuous probability distributions

	Bayesian thinking
	Bayes' formula
	positive predictive value
	prosecutor's fallacy
	reproducibility in science

	Bayesian inference
	Example: capture-recapture
	MCMC

	Reading:

	Review of linear algebra
	Solving multivariate linear equations
	Fitting a line to data
	Least-squares line

	Linearity and vector spaces
	Linear independence and basis vectors
	Projections and changes of basis

	Matrices as linear operators
	Matrices transform vectors
	calculating eigenvalues

	Linear models
	Regression toward the mean
	Finding the best fitting line: Linear Regression
	Solving a linear model — some linear algebra
	Minimizing the sum of squares
	Assumptions of linear regression

	Linear regression in action
	A regression gone wild
	More advanced topics
	Categorical variables in linear models
	Interactions in linear models
	Regression diagnostics
	Plotting the residuals
	Q-Q Plot
	Cook's distance
	Leverage
	Running all diagnostics

	Transforming the data

	ANOVA
	Analysis of variance
	ANOVA assumptions
	How one-way ANOVA works

	Inference in one-way ANOVA
	Example of comparing diets
	Comparison of theory and ANOVA output

	Further steps
	Post-hoc analysis
	Example of plant growth data
	Two-way ANOVA

	Investigate the UC salaries dataset
	A word of caution about unbalanced designs

	Model Selection
	Goal
	Problems
	Approaches based on maximum-likelihoods
	Likelihood function
	Discrete probability distributions
	Continuous probability distributions

	Likelihoods for linear regression
	Likelihood-ratio tests
	AIC
	Other information-based criteria
	Bayesian approaches to model selection
	Marginal likelihoods
	Bayes factors
	Bayes factors in practice

	Using tidymodels for modeling and cross-validation
	Prediction and cross-validation

	Other approaches
	Minimum description length
	Cross validation

	References and further reading:

	Principal Component Analysis
	Input
	Singular Value Decomposition
	SVD and PCA
	PCA in R—from scratch
	PCA in R — the easy way

	Multidimensional scaling
	Goal of MDS
	Classic MDS

	Readings
	Exercise: PCA sommelier

	Clustering
	K-means algorithm
	Assumptions of K-means algorithm

	Hierarchical clustering
	Agglomerative clustering
	Clustering penguin data using hierarchical methods

	Clustering analysis and validation
	Hopkins statistic
	Elbow method
	Silhouette Plot
	Lazy way: use all the methods!
	Validation using bootstrapping

	Application to breast cancer data
	References:

	Generalized linear models
	Goal
	Introduction
	Model structure

	Binary data
	Logistic regression
	A simple example
	Exercise in class: College admissions

	Count data
	Poisson regression
	Exercise in class: Number of genomes
	Underdispersed and Overdispersed data
	Exercise in class: Number of genomes
	Separate distribution for the zeros

	Other GLMs
	Readings and homework

	Machine learning methods for classification
	Introduction
	Naive Bayes classifier
	Naive Bayes penguin example
	Breast cancer data

	Decision Trees
	Penguin data
	Breast cancer data

	Random Forests
	Penguin data
	Cancer data

	References

	Monte Carlo methods
	Idea
	History
	Bootstrapping
	Example 1

	Example 2
	Hypothesis testing using Monte Carlo
	Example: penguin breeding pairs

	Randomizing binary tables (bipartite networks)
	Randomizing the network: checkerboard swapping
	Randomizing the network: curveball
	Example: Darwin's finches

	Time series: modeling and forecasting
	Goals:
	Time series format and plotting
	Visualizing the data

	Decomposition of time series
	Decomposition of time series
	Classic decomposition:
	STL decomposition

	Relationships within and between time series
	Visualizing correlation between different variables
	Autocorrelation
	Perennial warning: correlations are not causation!

	Modeling and forecasting
	Forecasting using smoothing methods

	References and further reading:

