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PREAMBLE

HOW TO USE THIS DOCUMENT

In this document, some areas are left intentionally blank. Dur-
ing the lectures, you will fill in the blanks with equations, graphs,
etc. In this way, there is no need to take notes.

LIST OF TOPICS

In the 5 weeks dedicated to ecology, we will explore the follow-
ing topics:

1.

2.

3.

Age-structured and stage-structured populations.
Simple models for population growth.
Metapopulations and conservation.

Interspecific Competition.

. Predator-Prey Interactions.

. Dynamics of large ecological communities.

TEXTBOOKS

There are no textbooks. However, each Chapter contains a list
of suggested readings.

MISCELLANEA

Homework: the text contains several exercises. You should
do them at home. At the beginning of each class, I will ask
a volounteer to do them on the board.

No laptops, no messaging, no iPads, no, no, no!

Feel free to ask any question either in the classroom or at
sallesina@uchicago.edu.

Oftfice hours: I receive by appointment.

iii



THEORY IN ECOLOGY

1.1 WHY IS ECOLOGY SO THEORETICAL?

Since the beginning of the discipline, ecology has always been
very theoretical. This is due to a number of reasons:

Complexity Ecological systems are very large and complex. Many ecosys-
tems contain thousands of species, all interacting with
other species and with the surrounding environment. Ide-
alized mathematical models are tools conceived to make
sense of this staggering complexity.

Difference All ecological systems are somewhat unique. Take two
lakes that are only a few miles apart. Despite important
similarities in the geology, climate, etc., the two lakes har-
bor different species, and have different dynamics. Theory
let us find generalities among different systems.

Data Gathering large ecological dataset requires much time, money
and effort. Theory helps us finding general patterns from
a limited number of data points.

Change Many ecological problems (e.g., global climate change) re-
quire predicting the development of ecological systems
under conditions that have never been experienced before.
Out-of-fit forecasting requires a mechanistic understand-
ing of ecological dynamics.

Experiments Large-scale experiments in ecology are impractical, im-
moral, or extremely expensive. Mathematical models let
us run “virtual” experiments using pen-and-paper or com-
puter simulations.

1.2 MATHEMATICAL MODELS IN ECOLOGY

In this course, we are going to explore many different mathe-
matical models found in ecology. Eugene Wigner (physicist and
Nobel laureate), once wrote an article titled “The Unreasonable
Effectiveness of Mathematics in the Natural Sciences”, and ecol-
ogy is no exception. We will see that mathematical models can
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help us understand the mechanisms responsible for the dynam-
ics of populations, the effect of disturbances, and the spatial
and temporal distribution of species. Given the short amount of
time available to cover the material, the choice of models is nat-
urally idiosyncratic. The goal is to provide a broad introduction
to ecological concepts through the use of simple mathematical
models.

A useful way to think about mathematical models in ecology

is through the trade-off triangle introduced by Richard Levins:
Generality Precision

Descriptive

Models for Theory
Development

System Simulation
Models

Realism

This graph stresses the idea that there are three qualities
(Generality, Precision, Realism) that a model cannot maximize
at the same time. Ecological theory produces simple models
that sit at the corner closer to Generality; for accurate predic-
tions, one needs descriptive, specific models which might not
embed much biology (e.g., purely statistical models, close to the
Precision corner); in many cases (e.g., individual based models)
one can build much Realism into models and see whether this
produces the overall patterns observed in the data.

In this course, we will mostly work with models that are
quite general, but we will see specific applications to conser-
vation biology.

READING LIST

e E. P. Wigner (1960). The Unreasonable Effectiveness of Mathe-
matics in the Natural Sciences Communications in Pure and
Applied Mathematics, 13:1-14.



Part 1

MODELS FOR A SINGLE POPULATION

In this part we explore the growth of a single popu-
lation.

We start by analyzing models in which the popula-
tion is divided into age/size classes, and introduce
matrix population models. We develop an applica-
tion of these models to conservation ecology.

We then move to models based on differential equa-
tions and briefly review models you should be famil-
iar with: the exponential and logistic growth models.
We emphasize the notion of stability, as we will use
it throughout the rest of the course.

We conclude discussing “meta-populations”, in which
local populations are connected by dispersal.






MATRIX POPULATION MODELS

In this Chapter, we explore the effects of having age-structured
or stage-structured populations. In natural populations, in fact,
mortality and fecundity are not constant, but rather depend
strongly on the age/size/stage of the individuals. For example,
older individuals typically display higher mortality and lower
fecundity.

2.1 RATE OF INCREASE

In most of the models we are going to explore, we write down
equations for the rate of increase (or growth) of a population.
For example, the US population in 2013 grew of about 0.7 per-
cent. January 1st, 2013, there were about 315 millions Ameri-
cans. A growth of 0.7 percent puts the population on Jan 1st
2014 at about 315 - (1 + 0.007) = 317.2 millions. In this case,
when we write the rate of increase as x = 0.007, we mean:

n(t+1) = (14 x)n(t) (1)

where n(t) is the population size at the beginning of year f, and
n(t+ 1) is the size at the beginning of the next year. Hence, the
growth rate can be computed as:

_n(t+1) —n(t)
IO
Using this formula, we can find the growth rate at for any year

knowing the size of the population at the beginning and end of
the year.

(2)

2.1.1  Doubling Time

What is the population size at time t + 2 is we keep x fixed?

n(t+2)=1+x)n(t+1) = 1+x)(1+x)nt) = (14 x)*n(t)
(3)
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in general,

n(t+T) = (1+x)"n(t) (4)
We want to find how long does it take to the population to
double in size. Thus, we want to solve:
n(t+T)=2n(t)

2n(t) = (1+x)"n(t) (5)
2=(1+x)"

Taking the log of both sides:

~ log2 0.693
log(1+ x) x_%2+%2+...

(6)

where the denominator can be written knowing that log(1 +
x) = x—x*/2+x%/3 —x*/4 + --- (MacLaurin series expan-
sion). Disregarding the higher order terms, we say that a pop-
ulation with growing at z% a year, will double approximately
every 69.3/z years.

— HOMEWORK

In 1980, the US Census reported a population of 226,545,805;
in 2010 of 308,745,538. Calculate the rate of increase x for the
model n(t+1) = (1+ x)n(t).

~
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— HOMEWORK
The database Scopus (www. scopus. com) indexes scientific publi-
cations. In 2011, it indexed 2,352,087 scientific articles. Consid-
ering that the number of publications grew of about 6% every
year since 2001, find approximately how many articles were
published in 2001. How long does it take for the number of
articles published to double?

~N

2.2 MATRIX POPULATION MODELS
2.2.1 Leslie Matrices

Divide a population in s classes, one for each age class (e.g.,
newborns, 1-year old, 2-year old, etc.): each year, individuals
in class k survive and move to the class k 4+ 1 with probability
0 < pr £1, k < s.Individuals in the last class cannot grow
any further and die at the end of the year.

To reiterate, class 1 contains the individuals of age o-1, class
2 the individuals of age 1-2, etc. At the end of the year, indi-
viduals move to the next class with probability py or die with
probability 1 — py. For starters, individuals in the first class can
move to the second class. Mathematically,

na(t+1) = pim(t) (7)

where 17 is the number of individuals in class 1. The same equa-
tion can be written for each other class. Because individuals of
class 1 cannot be survivors of any other class, they must have
originated from reproduction. We can write:

7
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nl(t + 1) = flnl(t) —I—le’lz(t) + fgng(t) +... (8)

where f; is the fecundity of individuals in class i: each individ-
ual in class i will produce on average f; offspring (individuals
of class 1) in a time step.

We can express the system in matrix form:

n(t+1) = A xn(t) )

fi fo fa oo fio1 fs

pp 0 0 0 0
A0 o0 0 0 (10)

0 O

O O

000 0 ... pesg O]

n(t) is a population vector, describing how many individuals
are in class i in a given year (t), and A is called a Leslie ma-
trix or projection matrix. The matrix is non-negative (i.e., all
the elements are positive or zero). In a Leslie matrix, the non-
zero terms are either on the first row (fertility) or on the sub-
diagonal (transition probabilities). The values on the sub-diagonal
are probabilities, and are therefore between o and 1. The top
row coefficient f, represents the number of offspring an indi-
vidual of age x will produce in a year (and thus are positive
numbers or 0, in case the corresponding class is not fertile). In
all the cases we will examine, the matrix A is considered to be
constant within an experiment. We next study how perturbing
the coefficients affects the growth of the population.

2.2.2  Projections
Take the Leslie matrix A:
0 1 5

A=103 0 0 (11)
0 05 0
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which can be translated into English as follows: the population
is divided into three classes. Newborns have probability 0.3 of
reaching the first year of age. 1-year old transition in the third
class with probability 0.5. Individuals start reproducing in year
1, and have on average one offspring per year. 2-year old have
higher fertility, producing five offspring per year.

At the beginning of our experiment, we have 1 individual in
class 1 and o individuals in the other classes (note that typically
we deal with asexually reproducing populations, or track only
the number of females). The number of individuals is to be con-
sidered for some unit of time/space, so it is actually a density.
In this way, it makes sense to have fractionary numbers.

n0)=10 (12)

We want to find the number of individuals at time t = 1. To
do so, we have to multiply the matrix x the vector. Remember
the multiplication rule:

apj; ap 413 n aj1ny + appng + aizng
AXn= | ay ap a3 | X | ny | = | ann +apny + axnz
az az as3 n3 a31ny + azhy + asz
(13)

Therefore the population at time ¢ = 1 becomes:

0-1+1-04+5-0 0
n(1) =Axn(0)=|03-1+0-040-0 | = | 03
0-1+05-0+0-0 0
(14)
Similarly, at time ¢t = 2 we have:
0-0+1-03+5-0 0.3
n(2)=Axn(l)=103-0+0-034+0-0 | =| 0
0-0+05-03+0-0 0.15

(15)



10

MATRIX POPULATION MODELS

We can compactly write the densities at any point in time
using matrix algebra:

n3)=Axn2)=Ax(Axn(l)) =

(16)
A x (A x (Axn(0))) = A3n(0)
In general,
nt)=Axn(t—1)=A2xn(t—2)=...= A x n(0)
(17)

Because computing the densities at a given time is quite bor-
ing, let’s plug the values in a computer. In Figure 1 I plotted the
densities in the three classes for t = 0,2,...,100. As you can
see, the number of individuals in the three classes increases
exponentially after some ups and downs at the beginning. In
Figure 2 I plot the proportion of individuals in each class. As
you can see, the proportion of individuals in each class stabi-
lizes quite rapidly, so that about 70% of the individuals are in
the first class, 20% in the second and 10% in the third.

What happens if we change the initial conditions (i.e., the
number of individuals in each class at time 0)? In Figure 3
and 4 I show that starting with n(0) = (1,2,3) does change
the actual number of individuals in each class at time ¢, but not
the qualitative behavior of the system: the population is still
growing exponentially, and the fraction of individuals in each
of the classes, after some ups and downs, stabilizes to the same
proportions.

2.2.3 Matrix Models

Leslie matrices are of limited applicability, as typically individ-
uals can live for a variable number of years, and it is difficult
to determine the exact age of plants and animals. It would be
better to classify the individuals as belonging to “stages” (e.g.,
juveniles, young adults, fully-grown adults, etc.) or classes of
sizes/weights (esp. for fish). To do so, we can extend Leslie
matrices to Leftkovitch matrices.

In a Lefkovich matrix, there are fecundities (top row), tran-
sition probabilities (sub-diagonal) as in Leslie matrices, but we
include the diagonal elements, standing for the probability of
remaining in a given class/stage/size.
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Figure 1: Projection of the 3-stage population in time starting with
(1,0,0). After some initial jiggling, the population grows

exponentially.

The matrix therefore becomes:

[ 7 f

P1 92

a=| 0 P
0 0

f3
0

q3

0

fs—l fs

o O O O

Ps—1

0
0
0
0

qs

(18)

where g, is the probability that an individual remains in class

x (for simplicity, assume that the first class cannot reproduce).

These matrix models are used in fisheries, conservation ecology
and many other fields.

11
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Figure 2: Projection of the proportion of the individuals in each class
in time starting with (1,0,0). After some years, about 70%
of the individuals are in the first class, 20% in the second
and 10% in the third.

2.2.4 Life Cycle Graphs

A simpler representation of a matrix, given the quantity of ze-
ros, is in terms of directed graphs (i.e., mathematical constructs
composed of nodes — the stages, and arrows — the probabilities
and fecundities).

In Figure 5 I show a directed graph representation of a Leslie
and a Lefkovich matrix model.
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Figure 3: Projection of the 3-stage population in time starting with
(1,2,3).

— HOMEWORK 2
Write the transition matrix corresponding to the graph

Is this is a Leslie or Lefkovich matrix?
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Figure 4: Projection of the proportion in each class in time starting
with (1,2,3).

2.3 MATH REFRESHER: EIGENVALUES AND EIGENVECTORS

We have seen that after some time, the fraction of individuals
in each class stabilizes to some constant proportion. Mathemat-
ically, this means that:

n(t+1)=Axn(t) = An(t) (19)

i.e., the matrix multiplication has the simple effect of multiply-
ing the number of individuals in each class for a constant, A.
In this way, if A > 1, the number of individuals in each class
will grow, if 0 < A < 1 the number of individuals in each class
will shrink and if A = 1 the numbers will remain unchanged.
Because we are multiplying each element of the vector n(t) by
a constant, the proportion in each class does not change.

If you remember from the classes you took before, this re-
sembles closely the definition of eigenvalues and eigenvectors.
Take a matrix A, a vector v and a constant A. If:
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f5

-
125 s

Figure 5: Directed Graph representation of Leslie (top) and Lefkovich
(bottom). The arrows stand for fecundities and probabilities.
The nodes represent ages in the Leslie model, and stages in
the Lefkovich model.

AXv=Av (20)

then A is an eigenvalue of A and v its corresponding (right)
eigenvector. Note that A is a scalar (a number) and v is a vector.
The easiest way to think about this problem is the following: we
know that the matrix A projects our population at time t into
the population at time t + 1. The transformation entails grow-
ing or shrinking of the number of individuals in the various
classes. What we are asking is if there is any distribution into
classes at time ¢t (call it v) for which the distribution at time ¢ + 1
is simply obtained by multiplying the distribution at time ¢ for
some constant A. If this is true, then v is an eigenvector and A
an eigenvalue of A.

What follows is a short refresher of eigenvalues and eigen-
vectors, with a focus on their actual computation for small ma-
trices. In case you are not familiar with these topics, read the
tutorials you find in the “Reading List” at the end of the Chap-
ter.

15
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2.3.1  Matrices

A matrix is simply a n x m table of numbers. In our case, the
numbers in the matrix are all real (i.e., no imaginary part). We
deal with squared matrices (i.e., the number of rows equals
the number of columns). In particular, we study S x S matrices
where S is the number of stages in the population.

We have seen that:

n(t+T) = ATn(t) (21)

If our projections matrices have two special properties (they
are irreducible and primitive, both typically satisfied), then the
growth of A for k — o is controlled by the eigenvalue of A
with the largest modulus. We call this eigenvalue the “domi-
nant” eigenvalue. Moreover, if the two properties are met, the
dominant eigenvalue is unique, and the eigenvector associated
with the eigenvalue is positive (which is quite comforting, given
that we would not know how to deal with “-6 juveniles”).

The population will grow when the dominant eigenvalue
> 1, or shrink when the dominant eigenvalue < 1. The eigen-
values of a squared matrix can be found solving an equation
that involves the coefficients of the matrix.

2.3.2 Trace and Determinant

The determinant of a squared matrix, det(A), is a quantity of
great importance in linear algebra. For a 2 x 2 matrix, it is com-
puted as:

a b

det(A) = i
c

‘ =ad — bc (22)

For a 3 x 3 matrix, we can compute it by writing the determi-
nant of three smaller matrices (minors):
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g h i (23)

a —b

ef df—i—c

h i g i g h
aei +bfg +cdh — ceg —bdi —afh

or by using a trick involving diagonals:

..
X g
aei + bfg + cdh - afh - bdi - ceg

The trace of a matrix tr(A) is the sum of its diagonal ele-
ments.

tr(A)ztr(a b)za—l—d (24)
c d
a b c
tr(A)=tr| d e f | =a+e+i (25)
g h i

2.3.3 Finding Eigenvalues

The identity matrix I is a matrix with ones on the diagonal and
zeros elsewhere. It is the equivalent of the number 1 for matrix
multiplication.

The eigenvalues of a matrix can be found solving the polyno-
mial:

det(A—AI) =0 (26)

17
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For a 2 x 2 matrix, we have:

det(A—AD)=| %N b oo
c d—A (27)
2
A2~ Aa+d)+ (ad — be) = 0 7
A2 — Atr(A) +det(A) =0
which we can solve:
. tr(A) + \/tr(A)2 — 4 det(A)
o 2
(28)
= a+d+ a2+ 4bc — 2ad + d2
- 2

Because for matrix population models, the coefficients are
always non-negative, the dominant eigenvalue is always:

_ tr(A) + Vtr(A)2 —4det(A)

A
2 (29)
a+d+ a2+ 4bc — 2ad + d?
Ag =
2
For a 3 x 3 matrix, we have:
det(A—AI) =0
a—A b c
e—A f |=0
g h i—-A
— A3 4 tr(A)A% — ((ae — bd) + (ei — hf) + (ai — cg))A + det(A)
(30)

Note that ((ae — bd) + (ei — hf) + (ai — cg)) is the sum of the
determinants of the three 2 x 2 matrices obtained removing row
and column three, one and two respectively.

Because we're only interested in matrices containing real num-
bers, the eigenvalues can either be real numbers, A; = x, or
paired eigenvalues with the same real part, and imaginary parts
with opposite signs: A = x + yi, where i = y/—1. In this case
we call the eigenvalues complex conjugates.

The trace and the determinant of the matrix appear in the
characteristic polynomial. In fact, the trace is the sum of the
eigenvalues of the matrix:
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tr(A) = Z/\z' (31)

and the determinant is the product of all the eigenvalues:

det(A) = [T\ (32)
1
For the matrix models we are studying in this Chapter, the
dominant (i.e., largest) eigenvalue determines whether the pop-
ulation grows or shrink: if A; > 1 we have growth,if 0 < A; <1
the population shrinks and for A; = 1 the population size is
constant.

— HOMEWORK
Compute the determinant and the eigenvalues of the following
matrices:

(03 08 |
Al =
"oz 02 63
(03 0.7 |
Ay —
o8 02] G4
07 045
Ax =
>~ |03 055 ] )

0.0 03 0.7
Ag=101 08 0.1 (36)
0.0 0.5 0.5

Compute the determinant (and, if you can, the eigenvalues) of:

~

2.3.4 Eigenvectors

The eigenvector associated with the dominant eigenvalue deter-
mines the stationary distribution into stages/classes. Eigenvec-

19
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tors can be recovered with the following method. We want to
tind a vector v for which:

AXv=Av (37)

Take the simplest Lefkovich matrix:

ool e
P q 02 02

The right-hand side is simply:

HEREES
P q %) AUy

For the left-hand side, we want to multiply the matrix and
the vector:

[ 0-v1+F-0p | [ Aoy |
= (40)
| pro1+q-02 | | Avp |
i F-o ] [ Avp |
S (41)
| prortq-0n | | Avp |
We can see this result as a set of equations:
Fo, = Ao
: ' (42)
po1 +qua = Avp
From the first equation we find:
)\Z)l
2= (43)

Substituting in the second equation, we find that v; vanishes:

A A
po1 + ?qvl = /\?01 (44)

Thus, we can choose any value for v; and compute the value
of v,. For any choice of v1, we will obtain a different eigenvector.
For example, take the matrix above and set v; = 1. Then, v,
becomes:

)\7)1

A
UZ_T_f (45)
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2.3.5 Eigenvalues and Eigenvectors for 2 x 2 Matrix Models

As we saw above, the dominant eigenvalue of the matrix:

[ a b
A_<cd> (46)

in which all the coefficients are non-negative, has dominant
eigenvalue:

a+d+ a2+ 4bc — 2ad + d2
Ag = > (47)

A similar expression holds for the dominant eigenvector. If
c > 0, the eigenvector v is an eigenvector associated with Aj;:

C -
while, if b > 0:
) _
’U:
[Ad_a_ (49)

If both b and ¢ are non-zero, you can choose either. If both
are zero, then the eigenvector is:

v:[(l)] (50)

HoMEWORK
Using these expressions, compute the dominant eigenvalue
and eigenvector for the 2 x 2 matrices of the previous home-
work.

2.4 INTERPRETING EIGENVALUES AND EIGENVECTORS

Suppose that the population at time ¢ is equal to ¢ - v where c is
a constant.

n(t)=c-v (51)
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Then we can plug this in and find:

n(t+1)=Axn(t)=Axco=c-Ag-v (52)

That is, the although the number of individuals in each class
may change, the proportion in each class does not. If A; > 1
then each class will grow in number, if A; < 1 each class will
shrink and finally if A; = 1 the population is constant.

For each eigenvalue, there are infinite eigenvectors. In fact,
eigenvectors are defined up to a constant. If 2 and b are con-
stants:

AXv=A-v
AXa-v=a-A-v

AxXb-v=b-A-v 3)

That is, v, av, bv are all eigenvectors of the matrix A corre-
sponding to the eigenvalue A.

Because we like to think about proportions, we take as the
eigenvector that for which the elements sum to one hundred,
and call it w.

Z w; = 100 (54)

For the matrix A that generated the Figures, the dominant
eigenvalue is 1.01815 and the corresponding eigenvector is:

69.5
w= | 205 (55)
10

Because the matrix has dominant eigenvalue > 1, the popula-
tion will grow exponentially, in this case with a rate close to 2%.
In fact, suppose that at time t the total number of individuals
is T:

T(t) = Z”i(t) (56)
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If we initialize the population at time o with 100 individuals
partitioned into classes as w, then T(0) = 100, T(1) = 101.815,
T(2) = 103.663, T(3) = 105.5445 and so on:

T(t) = AT(t—1) = A2T(t—2) = ... = A'T(0) (57)
READING LIST

The paper that started it all:

e Leslie, P. H. 1945. On the use of matrices in certain population
mathematics. Biometrika 33: 183-212.

The definitive book on matrix models:

e Caswell, H. 2001. Matrix Population models, Second Edi-
tion. Sinauer Associates, Inc. Sunderland, MA.

A very good paper on the algebra behind Google:

e Bryan, K., and Leise, T., The $25,000,000,000 Eigenvector:
The Linear Algebra Behind Google, SIAM Review, August
2006, Volume 48, Issue 3, p. 569-581.

Tutorials on Eigenvalues and Eigenvectors:
e math.mit.edu/linearalgebra/ilao6o1.pdf

e www.math.hmc.edu/calculus/tutorials/eigenstuff/eigenstuff.pdf






MODELING LOGGERHEAD SEA TURTLES

3.1 BUILDING THE MODEL

Loggerhead sea turtles (Caretta caretta) are among the most com-
mon sea turtles observed in the southeastern US. However, they
are not as common as they used to be, and in fact are protected
under the Endangered Species Act (“threatened” species).

Turtles lay eggs on soft beaches (Figure 6). A female starts
laying eggs around the age of 20 years, and will lay eggs four
times a year in the same season. Turtles can live for more than
50 years and weight more than 400 pounds (Figure 6).

Figure 6: Left: nest on a beach. Right: adult Loggerhead.

The causes of the decline observed in the last decades are
many, but the main include habitat loss (loss of nesting habi-
tat), increase in predation by natural enemies, entanglement in
fishing nets and failure of hatchlings to reach the sea due to
light pollution. In fact, newly hatched individuals rely on the
reflection of the moon on the sea to guide them.

A panel from the National Academy of Science found that
drowning in shrimp trawls accounted for more turtle deaths
than all other human activities combined, resulting in more
than 40,000 sea turtle deaths annually.

A possible solution to this problem is the use of Turtle Ex-
cluder Devices (TEDs) that would allow turtles to escape from
the nets. Prior to the implementation of TEDs, most sea turtle
conservation efforts aimed at improving egg and hatchling sur-
vival through protection of nests on beaches or removal of eggs
to protected hatcheries. In this example we will model both
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conservation strategies using real data to measure which one is

most effective.

The main vital statistics are reported in Table 1 (from Crow-

der et al., 1994).

Stage Description

Stage Duration (yr) Survivorship Fecundity

1 Eggs/hatchlings 1 0.6747 0
2 Small Juveniles 7 0.75 0
3 Large Juveniles 8 0.6758 0
4 Subadults 6 0.7425 o
5 Adults > 32 0.8091 76.5

Table 1: Vital statistics for the loggerhead population.

Using this data one can derive (but it is not straightforward,
see Crowder et al.) a matrix model:

0 0 0 4.665 61.896 |
0.675 0.703 0 0 0
A= 0 0.047 0.657 0 0 (58)
0 0 0019 0682 0
0 0 0 0.061 0.8091 |

To refresh what we saw in the first Chapter: this is a stage-
structured model. Each number on the diagonal represents the
probability of surviving while remaining in the same class. Num-
bers below the diagonal stand for the probability of moving
from the row-stage to the column-stage. Finally, the numbers
in the first row are the fertility values (i.e., average number of
offspring for each individual in the column-stage).

First, we want to find the dominant eigenvalue. It is 0.951.
This means that the population is declining with a rate of 4.9%
per year. Then, we want to examine the corresponding domi-
nant eigenvector. However, there are infinite of them. For con-
venience, choose the eigenvector w whose sum of all the coeftfi-
cients is 100:
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[ 239 ]
64.8
w= {103 (59)
0.7
. 0.3 |

meaning that the largest fraction of the population is repre-
sented by small juveniles, constituting almost two thirds of the
total. If at a given year we start with 100 individuals, we expect
the total to drop to:

T(10) = A'T(0) = 0.951'° - 100 ~ 60.51 (60)

individuals in 10 years. We now examine two possible strate-
gies to rescue the population, and show which one is most ef-
fective.

3.2 CONSERVATION STRATEGIES
3.2.1  Patrolling Beaches

One possible strategy is to patrol the beaches and move the
eggs that are in non-protected areas into nurseries. Assume that
in this way we can reduce the mortality of the hatchlings by
90%. The mortality right now is 1 —0.675 = 0.325 per year.
Reducing it by 90% would mean bringing it to 0.325-0.1 =
0.0325. Therefore the element in the matrix would change from
0.675 to 0.9675:

0 0 0 4.665 61.896 |
0.9675 0.703 0 0 0
Al = 0 0047 0657 0 0 (61)
0 0 0019 0682 0
0 0 0 0.061 0.8091 |

What is the effect on the population? First, we inspect the
dominant eigenvalue, which changed to 0.9724. That is, the pop-
ulation is still declining, with a rate of approximately 2.76% a
year. That would mean that in 10 year, starting with 100 turtles
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at the stationary age distribution we would end up with 75.6 —
a decisive improvement, but not sufficient to rescue the species.
The stationary age distribution w becomes:

[ 193 ]
69.4
w' = | 104 (62)
0.7
0.2 |

meaning that the small juveniles become even more predomi-
nant, while the fertile classes still represent around 1% of the
population.

3.2.2 TEDs

Another possibility is to use Turtle Excluder Devices (TEDs).
These are special nets (especially for shrimps) that allow turtles
to escape (see Figure 2). In fact, as all amphibians, turtles have
to breathe air from the sea surface. The typical dive lasts be-
tween 15 and 30 minutes, but in case of necessity, individuals
can spend up to 4 hours submerged (!). However, if caught in
nets for an extended period of time, turtles will drown.

In our original matrix, 65.7% of the large juveniles remain in
the same class in the next year, while 1.9% of them grow to the
next class. The mortality rate is therefore 1 — (0.657 4 0.019) =
0.324. If we assume that TEDs can reduce the mortality rate
by 90%, we have to redistribute a mortality rate of 0.0324 (and
therefore a survival probability of 0.9676) between the two com-
ponents. This can be done by computing 0.9676 - 0.657/(0.657 +
0.019) = 0.9404 and 0.9676 - 0.019/(0.657 + 0.019) = 0.0272. The
new matrix becomes:

0 0 0  4.665 61.89 |
0.675 0703 0 0 0
A = 0 0.047 09404 0O 0 (63)
0 0 0.0272 0682 0
L 0 0 0 0.061 0.8091 |

The dominant eigenvalue is 1.06, and the stable class distri-
bution becomes:
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27
51
w’" = | 201 (64)

15
| 04

Therefore, TEDs alone can rescue the population from extinc-
tion. An analysis similar to that we performed today is at the
base of American policy on TEDs. Since the introduction of
TEDs the loggerhead population has been growing at a rate of
approximately 3%. Currently, larger TEDs are being examined,
as they could potentially reduce the mortality of adults that are
too big to escape from the nets.

— HOMEWORK
A population is described by the following matrix:

Ao 1.3] 65

x 0.2

Compute the dominant eigenvalue and eigenvector. For which
values of x does the population grow? When the population is
growing, do juveniles or adults dominate the population?

\
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Figure 7: Top: Example of Turtle Excluder Device. Bottom: turtle es-
caping from a TED.



EXPONENTIAL AND LOGISTIC GROWTH

4.1 EXPONENTIAL GROWTH

We now switch gears from discrete to continuous growth. Con-
tinuous growth models are especially suited for populations
where reproduction can happen at any point in time.

For discrete time models, we wrote:

_ N(t+At) = N(t)
r= N () (66)

meaning that the rate of increase is equal to the increase in the
number of individuals N(t + At) — N(t) divided by the initial
number of individuals. What happens if we make the interval
At shorter and shorter? For At going to zero, we obtain:

1 dN(t)

TN@ at €7)
rearranging:
AN _ N (68)

dt
which is the differential equation for the exponential (Malthu-
sian) growth you should be familiar with.

4.1.1  Analysis
Given the initial condition:

N(0) = No =0 (69)
we can solve the equation. The equation is separable:

AN (1)

O (70)
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Integrating both sides:

TAN(t) [T

; —N(t) —/0 rdt (71)
[In(N)]xto) = [rtly (72)
In(N(T)) = In(N(0)) = rT (73)

In (%) =T (74)

N =" 75)
N(T) = N(0)e'T (76)

The interpretation of the solution is the following: for r >
0 the population grows exponentially. For » < 0 the decay is
exponential. For » = 0 the population is constant.

4.2 THE LOGISTIC GROWTH MODEL
4.2.1 Intraspecific Competition

We have considered a model in which populations grow with-
out constraint. However, due to the finiteness of resources, an
environment cannot sustain an infinite population. When re-
sources start being scarce, a fierce competition among individ-
uals of the same species begins. We call this effect intraspecific
competition (i.e., within the same species).

To set the stage, let’s examine some data from Gause (1932).
To test the effects of intraspecific competition, Gause used brewer’s
yeast (Saccharomyces cerevisiae). His experiments were based on
the growth of yeast in an environment with a limited nutrients.
He started the population at some low level and then he mea-
sured the volume of the cells in time. The data is represented
in Figure 8.
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12
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Figure 8: Data measured by Gause. Growth of brewer’s yeast in an
environment with limited nutrients.

Clearly, yeast does not grow to infinity. Rather, after 1 day or
so the population stops growing and remains around a given
volume. Suppose that a population can grow up to a certain
threshold K, usually known as carrying capacity. This model
can be represented by the differential equation:

—dip = rN(t) (1 - %) (77)

where r can be measured as the growth rate at very low density
and K is the carrying capacity for the system, i.e., the density
of individuals the habitat can support. Note that » > 0 and
K > 0, otherwise it does make biological sense (Why if r < 0
the equation does not make sense?)
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4.2.2  Analysis

Plot dl:i]—t(t) vs. N(t) (see Figure 9). Using this graphical method
we can count the number of equilibria and investigate their sta-

bility.

Logistic Growth, K=8, r=0.2

0.4

0.2

0.0

dN(t)/dt

N()

Figure 9: Graphical methods for logistic growth.

We define an equilibrium point (or steady state, or fixed point
or critical point) a point in which ‘fi—];[ = 0. In this point, the
growth rate is zero: left alone, the population will not grow nor
decay. In the logistic growth equation we have two fixed points:
N* = 0, N* = K. This can be seen in the graph whenever ‘;—];]
crosses the zero line.

An equilibrium point N* is stable if when we slightly perturb
the system that is resting at N*, lim; ,.c N(t) = N*. We can
think about stability using the cartoon in Figure 10.

The red ball is at an unstable equilibrium point: slightly per-
turbing its position will set it in motion ending up at another
point. The blue balls, on the other hand, will return to the same
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N N\

v

Figure 10: Stability as a metaphor.

point once slightly perturbed: they are at stable equilibrium
points.

For the logistic growth, we have that Nj = 0 is unstable,
while Nj = K is stable. For single species dynamics, whenever
growth rate is > 0 on the left of the fixed point and < 0 on the
right of the fixed point we have stability. Therefore, if a species
has density 0 and we slightly increase its density (decreasing
it would be a biological nonsense) it will start growing until it
reaches density K, when it will stop growing.

We will now use some mathematics to get a qualitative un-
derstanding of equilibria. First, we want to find the equilibria.
By definition, we want to solve the equation:

N*
rN* (1 - ?) =0 (78)

There is a trivial solution:

N*=0 (79)

while the other solution can be found using:

1-N*/K=0 (80)

N*/K =1 (81)
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N* =K (82)

We now want to measure the growth rate in the vicinity of
an equilibrium. First, let us assume that N(0) < K (i.e., the
population at time 0 is at a much lower level than the carrying
capacity). Then, (1 — N(0)/K) ~ 1. This means that the growth
rate equation is approximately:

dN N

the population, when close to 0, will grow almost exponentially.
In the same way, we can evaluate what happens when N(0) ~
K. In this case (1 — N(0)/K) ~ 0 and therefore:

AN N

the population will remain constant.

Finally, when N(0) > K the term (1 — N(0)/K) becomes
negative (say the value is some unspecified —y). Then the ap-
proximate growth becomes:

dN N
i —— )~ - 8
7 rN (1 K) rNy (85)
the population decreases exponentially.

We want to know where the population grows at the fastest
rate. To do so, we first take the derivative:

Q4N
—dt 2rN (86)
oN K
and equate it to zero:
2rN
K
N = > (88)
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N(t)

1.0
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Figure 11: Logistic Growth: K = 1, r = 2. Blue: N(0) = 0.1, Red:

N(0) = 1.9

we find that when the population is half-saturated, it grows
at the fastest rate. Piecing these facts together, we can draw a
qualitative solution for the differential equation (Figure 11).

This qualitative drawing captures the essential features of the
solution:

K

N =13 (K/No—1)e 7t

(89)

The solution can be obtained using partial fractions, and is
reported below.
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4.2.3 Optional - Solving the Logistic Equation

Non-Dimensionalization

Numerical solutions for a model depend on the actual values of
all the parameters and initial conditions. However, the possible
behavior of the model is controlled by the relation among the
parameters (e.g., if you express the mass in grams or Kg, the
numbers will change, but the stability of equilibria will not). A
useful technique to investigate which combination of parame-
ters is critical for the dynamics of the system is the rescaling
of models so that they become dimensionless. Dimensionless
models typically contain less parameters than their counter-
part.

For example, take the logistic growth model above and set
x = N/K. Because both N and K are of the same unit (e.g.,
biomass, or density), then x has no dimension.

dx 1

=% (90)
AN 1 N
- = E;fN (1 — E) =rx(1—x) (91)

now let’s set ¥t = 7. Note that r is in units of 1/time, so that
T is dimensionless. This makes the system dimensionless (use
chain rule with dt = dt/r):

dx dxdt ldx 1
E—EE—;E—;Vx(l—X)—X(l—X) (92)
Solving the logistic dimensionless model

This is a separable differential equation:

/ ﬁdxz [ 93)

For the left part we use partial fractions:

1 A B

x(l—x):;_'_x—l (94)
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multiply by x(x — 1) both sides.

—1=A(x—1)+Bx (95)

when x = 0 we find A = 1, when x = 1 we have B = —1.

Therefore:

Ja ()

Integrating by substitution:

/(%—xil)dx—/ dx—/—d /dx—/ 2 du

(97)
with u = x — 1. The integrals are simply solved:

log(x)[3{g) — log(x —)[y) = T (98)

From this, setting x(0) = xop we can write:

log(x(T)) —log(xg) — log(x(t) — 1) +log(xg—1) =T

(99)
log% =T (100)
x(t)(xo—1) -

x(t) —1)xg ¢ (101)
x(T)(xg—1) =e"((x(1) — 1)x0) (102)
x(T)(x0 — 1 — xge") = —xpe’ (103)
x(r) = 0 Xoe. (104)

(IT+xe" —x0) (1+xo(e"—1))

Now we can substitute back 7 = rt and x(t) = N(t)/K) to
recover the solution of the logistic growth:

N()Kert (10 )
K+ No(e't —1) 2

N(t) =
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4.3 DOUBLING TIMES

For the case of exponential growth, calculating doubling times
is especially easy. We simply need to plug the value in the solu-
tion:

N(T) = N(0)e'T (106)

Setting the left-hand side to 2N(0), we get

2N(0) = N(0)e'T (107)

If N(0) > 0, we can cancel on both sides:

2=¢T (108)
log2 =7rT (109)
lorgZ =T~ 0.3 (110)

meaning that the double time is independent of the initial con-
ditions. From the approximation, we see that a growth rate of
about 0.03 leads to doubling the population every ~ 10 years.
For the logistic growth, the solution is more complex. First,
the population cannot double if its above K/2. Second, the time
it takes to double in size depends on the initial conditions.
Plugging N(t) = 2N in the solution, we have:
2Np = K (111)
1+ (N£O - 1) et

multiplying both sides by 1 + (N£0 — 1) e ",

2Ny + 2Ke "™ —2Npe "* = K (112)

2Ke ™ —2Npe " = K — 2N, (113)
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K — 2N,
—rt __ 0
¢ T 2K-2N, (114)
2K — 2N,
rt o 0
log ((2K=2N
P ( K—2Np ) (116)

r

Note that this expression makes sense only when Ny < K/2.
For Ny, we recover the doubling time for the exponential growth.

— HOMEWORK
A population is at density N(0) = 0.2, and has a growth
rate r = 0.1. When will it grow to 0.9 assuming exponential
growth?

What if the population is regulated, with carrying capacity K =
1?

~N

4.4 THE ALLEE EFFECT

Warder Clyde Allee was a professor at the University of Chicago.
In 1932 he showed that goldfish grow faster in a tank laced
with colloidal silver suspension when their density is higher.
The so-called Allee effect now more generally denotes the fact
that under certain conditions, an increase in density leads to an
increase in growth rate (i.e., the contrary of what seen in the
logistic equation).

The causes of an Allee effect could be several. For example,
increasing the density of a small population could improve its
growth rate because it could make it simpler to find a mate,
improve cooperative hunting or defense, and would alleviate
genetic problems due to small population size.

A simple model describing a population with Allee effect:

%gzrw(%—q)(y—%) (117)

where 0 < A < K.
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HoMEWORK
Find the three equilibria for the Allee model and study their
stability using the graphical model introduced above.

READING LIST

I am a big fan of the work of Richard Levins, and I think that
anybody interested in modeling should read:

e Levins, R. (1966) The Strategy of Model Building in Popula-
tion Biology. American Scientist, 54:421-431.

You are going to read this article in the laboratory section of
the class.



SPATIALLY-STRUCTURED POPULATIONS

Populations may be structured in space. For example, a species
might thrive in presence of suitable habitat, but not be found in
unsuitable habitat. Spatial models take two main forms: patch-
occupancy (metapopulation) models, and reaction-diffusion mod-
els (modeling directly the movement of individuals). Here we
concentrate on the former.

We can think of a landscape from the point of view of our
species of interest: individuals sees patches of suitable habitat
(islands) arranged in a background of unsuitable habitat (sea).
They move through the landscape, but only “live” (breed, nest,
forage, etc.) in the patches of suitable habitat. Hence we might
model the landscape of a network of patches: the nodes of the
networks are the patches themselves (possibly characterized by
a patch “value”), and the connections between the nodes stand
for dispersal (typically with dispersal decreasing with distance
— Euclidean, or “perceived”).

5.1 LEVINS'S METAPOPULATION MODEL

The first usage of the word “metapopulation” (i.e., a population
of local populations connected by dispersal) is due to Richard
“Dick” Levins (formerly at U. of Chicago), who in 1969 /70 pro-
posed the simplest model for a metapopulation.

Levins’s main idea is quite simple: local populations live in
patches, and the dynamics are dominated by local extinction
and colonization of patches.

Local populations can go extinct for a variety of reasons, such
as low population numbers (demographic stochasticity), fluctu-
ating environmental conditions (environmental stochasticity),
disease, over-exploitation of resources, introduction of preda-
tors, etc. Thus, there is a process of extinction, turning occupied
patches into empty patches.

This process of extinction might be counter-balanced (res-
cue effect) by colonization from neighboring occupied patches.
Clearly, colonization is a function that in general depends on
the ability of the population to disperse, and we can expect
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dispersal to decrease with distance and with the difficulty of
crossing inhospitable habitat.

Levins’s model makes many simplifying assumptions. It con-
siders infinitely many patches of suitable habitat, all reachable
from each other at the same dispersal rate. Take p(t) to be the
proportion of patches occupied by the species of interest at time
t. The extinction rate is the same in all patches, J (i.e., the time
a patch stays occupied is Poisson with rate J, such that the
probability of remaining occupied from time 0 to time # is e~%).
When a patch is not occupied, it can be colonized by the other
occupied patches at rate c. Then, we can write a differential
equation tracking the proportion of occupied patches:

) — _sp(1) + (1 - p(E))ep (1) (118)

This equation is in fact identical to that of the logistic growth:

d’;_(tt) = —0p(t) +cp(t) — cp*(t) (119)

c

P — (= o) (1- g0 0)) (121)

setting ¥ = (c — ) and K = (c — J)/c, we can say that there
are two equilibria, p* = 0and p* =K = (¢ —4d)/c =1-0/c,
of which the positive is stable. Hence, the metapopulation will
persist at a positive proportion of occupied patches whenever
c> 0.
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— HOMEWORK

the species.
This modifies the model to:

dp(t)

metapopulation go extinct?

Suppose that not all patches are habitable: due to habitat de-
struction, only the fraction / of patches is actually suitable for

— 5 = —op(t) + (= p(8))ep(t) (122)

Compute the new equilibrium. For which value of i will the

5.2 REALISTIC LANDSCAPTES

We now want to model spatially-explicit, realistic landscapes.
We will write species-occupancy models (i.e., models where
each patch of suitable habitat is either occupied — X; = 1, or
empty — X; = 0). We allow for two types of event: local ex-
tinction (patch i going from X; = 1 to X; = 0) and colonization
from other occupied patches (leading to patch i changing from
Xi:OtOXi:1).

If we assume that in a small time interval only one event
can occur, we can model the dynamics exactly using a Markov
chain.
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000
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One interesting aspect is that there is a single absorbing state,
that in which all patches are empty. Thus, in case there is no
external immigration, for ¢ — co the metapopulation will go
extinct.

Even though this is the ultimate fate of the metapopulation,
a meta-stable (quasi-stable) regime dominates the dynamics for
a long time: until we have especially bad luck and all patches
go extinct, a typical proportion of patches is occupied. This is
the regime we are most interested in.

Another problem is that the size of the Markov chain grows
rapidly with the number of patches. If we have hundreds of
patches (which is quite common in real applications), the num-
ber of states of the Markov chain (2%, where N is the number
of patches) exceeds the number of atoms in the visible universe,
rendering the approach completely useless.

We therefore turn to approximate models. In particular, we
will examine the approximation by Hanski and Ovaskainen,
which models the approximate dynamics of the system as a
set of N differential equations. This approach, besides being
more tractable mathematically, has the added advantage that
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the meta-stable state of the Markov chain is the equilibrium
state of the system.

5.2.1 Tracking expectations

We model E|[X;(t)], which can be interpreted as the probability
of finding patch i occupied at time £.

% =E | -&X;(t) + (1 - X;(t)) ZDinj(t) (123)
j#i

where the dynamics of the patch i are influenced by a patch-
specific extinction rate J;, and the colonization from other oc-
cupied patches, modeled as D;; (the rate at which individu-
als from patch j —when occupied— colonize patch i —when
empty). Because the expectation of a sum is the sum of the ex-
pectations, we can write

dE[X;(t)]

47

dt = _5iIE[X + ZDZ]IE[X ZDI]IE[X( ) ( )]

j#i j#i
(124)

Here’s where the approximation kicks in: we assume that
E[X;(t)X;(t)] = E[X;(t)]E[X;(t)], i.e., that the probabilities of
having patch i and patch j occupied are independent. Turns
out, this is not a terrible approximation, as in general we expect
the two probabilities to be positively correlated, so that we are
being conservative in our approximation.

With this approximation at hand, and writing p;(t) = E[X;(t)]
for brevity, we obtain the model

dp;(t
IZE ) 1 - pz ZDZ]p] 5ipi<t) (125)
j#i

5.2.2  Modeling extinction

In the Hanski-Ovaskainen model, each patch i is associated
with a value, A; (think of it as its “area”, or “carrying capac-
ity”). The extinction rate of patch i depends on a background
extinction rate, 6, whose effect is mitigated in patches of high
value:
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0 = — (126)

5.2.3 Modeling dispersal

The dispersal rate from patch j to patch i depends on the dis-
tance between the patches (in general, we believe dispersal to
eventually decrease with distance). In the simplest case, we
can model it as a function of the Euclidean distance between
patches. Suppose that d;; is the distance between patches i and
j- Then, we write the “dispersal kernel” as a function of the dis-
tance, measured in ¢, the typical dispersal length of the species
in question (so that 1 Km would be much for a snail, but not
for a wolf).
Example of kernel functions:

—d;j

1. Exponential: f(d;;, &) = e ¢ .
_dlzj

2. Gaussian: f(d;;,¢) =e 262

3. Rectangular: f(d;;, {) = 1if d;j < ¢, 0 otherwise.

The three kernel functions are represented in Figure 12. In the
Hanski-Ovaskainen model, dispersal rate increases with patch
value:

Dij = f(dij, §)A; (127)

5.2.4 Metapopulation capacity

Hanski and Ovaskainen were able to prove that the metapopu-
lation is persistent only if the dominant eigenvalue of the dis-
persal matrix, M, dubbed the “metapopulation capacity” A, ex-
ceeds the baseline extinction rate 4.

The dispersal matrix is defined as:

M;; = f(dij, §) AiAj
M;; =0

(128)
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Figure 12: Different kernels of dispersal, for ¢ = 3/2.

The metapopulation can persist only if the dominant eigen-
value of M, A > ¢, which can be interpreted exactly as Levins’s
model results: the colonization rate has to exceed the extinction
rate.

5.2.5 Growling grass frog

Just to have an idea of how metapopulation models are used
in conservation biology, we can look at some graphs from the
recent Heard et al. 2012 paper in the journal Biological Conserva-
tion. Heard and colleagues sampled patches of habitat suitable
for the growth of the growling grass frog (Litoria raniformis), an
endangered species of frog living in south-east Australia and
Tasmania.

The authors studied the landscape around Melbourne, and
recorded all the wetlands where the frog could potentially live.
They surveyed 167 locations (patches) over six seasons (from
2001 to 2007).

This is what they found:
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8
—

Note that the occupied patches (filled dots) are clustered spa-
tially; that the colonized patches (half-filled dots) are close to
occupied patches; that the extinct patches (dots with a cross)
typically belong to small isolated clusters or are associated to

habitat destruction (crosses).
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By means of capture-recapture, the authors were also able
to estimate the dispersal kernel, which is similar to the cases

studied above.

1.0 ~ 1.0
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In the top graph, the dashed-line is the empirical data (pro-
portion of observed movements at each distance, left-scale), and
the solid line is the fitted dispersal kernel using a power func-
tion (p d;?;.). The bottom panel shows that less than 20% of the
frogs disperse over their lifetime, while the majority spends the
whole life in the same wetland.

5.2.6  Effect of habitat destruction

Suppose that we were to solve the model by Hanski and Ovaskainen,
and to compute the probability that a patch is occupied at equi-
librium (i.e., in the meta-stable state). Then, the probability that

a randomly drawn patch is occupied can be approximated by:

pra1-6/A (129)
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This means that the dominant eigenvalue A plays about the
same role as the colonization rate of the unstructured model by
Levins.

If the dominant eigenvalue determines the long-term behav-
ior of the system, the dominant eigenvector (i.e., the eigen-
vector associated with the dominant eigenvalue) determines
the contribution of each patch to the overall persistence of the
metapopulation. In fact, for metapopulations that are close to
extinction, we can measure the importance of patch i as v;?-)\,
where v; is the i" component of the eigenvector. In this way,
we can “rank” patches for their importance in maintaining the
landscape connected and the metapopulation viable. Clearly,
for conservation, we need to focus on the patches with high v;,
which—fortunately—tend to cluster together spatially.

5.3 METAPOPULATION AND SUSCEPTIBLE-INFECTED-SUSCEPTIBLE
MODELS

We can think of patches being “infected” by the population of
interest. Then, migration would correspond to infection, and ex-
tinction to recovery. Hence, the metapopulation models we ex-
amined have much in common with Susceptible-Infected-Susceptible
(SIS) models for the spread of infectious diseases (also known

as “contact processes”). These models are widely used to de-
termine the fate of epidemics for diseases that do not confer
immunity (e.g., computer viruses, many bacterial infections).

5.3.1 Mean-field SIS

In the simplest case, we consider a population composed of
either Susceptibles (S) or Infected (I) individuals, such that
S(t) + I(t) = N, i.e., the population does not grow or shrink
in the interval of time considered by the model. We can write
a system of differential equations modeling the spread of the
disease:

45U _ _ps()1(t) +y1(1)

(130)
ﬁ—ﬁs () — 71(8) e

The interpretation of the model is as follows: individuals get
in contact with each other at random (“mass-action”), so that
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the rate at which susceptible individuals are transformed into
infected individuals is given by BS(t)I(t). The disease has typ-
ical duration 1/7, such that the rate of recovery of infective
individuals are cured becomes yI(t).

Because the population is fixed, S(¢) + I(t) = N, we can sub-
stitute S(f) = N — I(t), finding:

— = BS(OI(t) = vI(t) = (N — I()1(t) — 7I(t)
(131)
a model we’ve seen many times before:
d;_(tt) = (BN —)I(t) <1 — ﬁNﬁ_ 7[(t)> (132)

i.e., a logistic growth model with 7 = BN —yand K = N — /8.
Hence, there are two equilibria: [* =0 and [* = K= N —y/p.
The disease-free equilibrium is stable whenever the population
of infective individuals cannot grow when rare. This happens
when r = BN — 7 < 0. Usually, this inequality is written as

N
Ry = ﬁT <1 (133)

The quantity Ry (R-naught, or basic reproductive number)
tells us how many individuals can “the first” infected individ-
ual can infect before recovering from the disease. The calcu-
lation of Ry plays a central role in more complex models (for
example, Susceptible-Infected-Recovered — SIR, or Susceptible-
Exposed-Infected-Recovered — SEIR).

5.3.2 SIS on a network

In the simple model above, contacts between individuals hap-
pen “at random”. This is clearly not the case in reality, where
the probability of transmission is mediated by a social network
of interactions. Interestingly, the same exact model of Hanski
and Ovaskainen has appeared in the literature on infectious
diseases (the “NIMFA” approximation by Van Meighem and
colleaguess—see the Reading List). In this case, the social net-
work determines who is close to whom, but other than that the
models are identical, allowing for the cross-pollination between
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the fields of research. The interplay between geographic and so-
cial interactions are of great interest for current research on the
modeling of epidemics.

READING LIST

The Hanski-Ovaskainen model:

e Hanski, I., and Ovaskainen, O., 2000. The metapopulation
capacity of a fragmented landscape. Nature 404:755-758.

Metapopulations and the conservation of Litoria raniformis:

e Heard, G.W. et al., 2012. Classical metapopulation theory as a
useful paradigm for the conservation of an endangered amphib-
ian Biological Conservation 148:156—-166.

SIS models on a network:

e Van Mieghem, P. et al., 2009. Virus Spread in Networks IEEE/ACM
Transactions on Netorking, 17:1-14.



Part 11

MODELS FOR TWO INTERACTING
POPULATIONS

In this part we analyze the behavior of a small eco-
logical community composed of two species.

We start by analyzing a system composed of two
competitors, and we derive the principle of compet-
itive exclusion, one of the few laws of ecology.

We then turn our attention to consumer-resource dy-
namics, studying predator-prey systems, the build-
ing blocks of food webs.






INTERSPECIFIC COMPETITION

We already saw the effect of intraspecific (i.e., within the same
species) competition, and we used this fact to justify the logistic
growth model. Now we want to add to the picture interspecific
(i.e., between different species) competition. In particular, we
want to find whether and how two similar species can coex-
ist. We will experience the effects of interspecific competition
in the laboratory, when we will fit very similar models using
experimental data.

6.1 THE LOTKA-VOLTERRA COMPETITION MODEL

We have two species, N; and N,. In isolation, each species
grows logistically. When the two species come into contact, how-
ever, they compete reducing their respective growth rates:

N _N_p N
i 7’1N1 1 K b1,2 K

1
D _ Ny (12— by, 2 (134)
where Ky, Ky, 71,12,b12,b21 > 0. The coefficient by, represents
the competitive effect of N, on Nj. Typically, b1, # by ;. What
is the interpretation of b1, and by1? Let’s take b; 5, describing
the effect of N on Nj. If b;p = 1 then adding one individ-
ual of species 2 has the same effect on the growth of species 1
found adding an individual of species 1. If, on the other hand,
b1, > 1, adding one individual of species 2 will depress the
growth of 1 more than found adding an individual of species 1.
Finally, if b1 < 1 adding individuals of species 2 depresses the
growth of 1 less than expected adding an equivalent number of
conspecifics.

6.1.1  Analysis

First, we want to find the equilibria of the system. A point
(N5, Ny) is an equilibrium if at that point both species do not
grow nor shrink. We can start by listing some “trivial” solutions.
Both species can be extinct:
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N =0
{ ! (135)
Ny =0
Or one of the two species may be absent:
{ No=0 (136)
N =K
(137)
{ Ny =0

Finally, the more interesting case:

{ N ke (138)

N} =K, — by N;

In the previous equations, we are expressing the equilibrium
of species 1 in terms of individuals of species 2 and vice versa.
It is therefore convenient to plug the second equation into the
first:

N =Ky —b1o(Ky — by, 1Ny) = Ky — b1 2Ky + by b1 Ny
N =K~ by N

(139)
which becomes:
Ny = Ky — b12Ka +b12b2 1 Ny
Ny —b1pb 1 N = Ky — 012K
. (140)
N{ (1 = bipby1) = Ky — b1 0Ks
N — Ki1=b1,Ko
1 = T=byohy,
Similarly,
. Ko—byiK
N =t (49

This equilibrium point is more interesting, as for particular
values of the parameters both species can coexist.
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6.1.2 Nullclines

If we have only two species, we can draw their growth in the
so-called “phase plane”, in which we track what happens to
dN;/dy and dN,/dt for different values of N; and N,. We are

interested in points at which the first equation is 0:

% =0=nrM (1 - % - 191,2%> (142)
There are two cases:
Ny =0
(1_%_1,1/2%) —0 (143)
The second case becomes:
1= % + b1,2% (144)
Ny = 50
Similarly, the growth of the second species is 0 when:
N; = o=t (145)

b1

These equations are of the form y = ax + b: they are lines in
the phase plane. In Figure 13 I show how we can find the areas
in which each species grows or shrinks.

We can now put the two lines together. There are four cases,
represented in Figure 14. For each case, we can describe quali-
tatively the behavior of the system.

6.1.3 Competitive Exclusion

We want to assess the ability of a species to invade an environ-
ment dominated by the other species. We start by defining the
growth rate per individual of species 1.

1 dN Kj — Nj — b12N;
L (= hae 49

When species 1 is very rare, we can approximate:

LdN _ - (Ki—0—bioKo
N, dt ! K;

(147)
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Figure 13: Nullclines for N; and N; in the phase plane.
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This equation tells us that species 1 will grow when rare (be

able to invade) if

K1 —b10Ko
(—Iq -0

Which implies:

— >b
K2> 1,2

Similarly, species 2 can invade when rare if:

(148)

(149)
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Figure 14: Nullclines for N; and N; in the phase plane.

Ky 1

< 150
K b, (150)

These inequalities map back into the four cases examined
before. The first case is when:

1 K
—<—1>b1,2

151
b < & (151)

In this case, only species 1 persists (top right graph). Simi-
larly, when:

152
by = K ’ (152)

1
b K ) (153)
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Both species coexist stably (bottom right graph). Finally, when:

%1 < % <bip (154)
The equilibrium is unstable. Depending on the initial condi-
tions, either species 1 or species 2 will win (precedence effect).
The principle of competitive exclusion states that two species
that have similar resource use can not coexist. To show this
suppose that K = 10 and that by, = by = 0.95 (this is a way
to model a great overlap in the use of resources). Then stable
coexistence can happen only when:

— > —>095 (155)

which becomes:

K
1.053 > 1—8 > 0.95 (156)
10.53 > K5 > 9.5 (157)

That is, there is a very narrow range of K; for which coexis-
tence is possible. On the contrary, when the two species do not
have a great overlap in resource use (b1, = by = 0.1), we find:

1 Ky
10 > Ky > 0.1 (159)

That is, the range of coexistence is greatly expanded.

6.2 LOCAL ASYMPTOTIC STABILITY ANALYSIS

We have seen a powerful graphical method to determine the sta-
bility of an equilibrium when we’re dealing with one equation
(Figure 15).

The equilibrium is stable if the slope of the curve dN/dt
is negative at N*. Mathematically, we can write the slope of
dN/dt at any point as:
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f(x)

stable unstable

unstable  unstable unstable

Figure 15: Stability for a single population (from
dx.doi.org/10.4249/scholarpedia.2014).

dN
_dt
oN

We can then plug in the value N* and check whether the
slope is negative. For example, in the logistic growth:

slope = (160)

2
8‘%] = ’ <rN _ rNT) =7 — 21‘N (161)
ON oN N K

We can see that if N* = 0, the slope is positive (r), and
thus the equilibrium is unstable, while if N* = K, the slope is
negative (—r) and thus the equilibrium stable. Note also that
the analysis is “local”: it only holds for small perturbations
of N* (remember the graph for the Allee model, in which we
could take a population and make it go extinct through a suf-
ficiently large perturbation). Moreover, the stability is “asymp-
totic”: small perturbations will eventually die out and the sys-
tem will return to the equilibrium, but the speed at which this
happen can be very low (we're only checking whether the slope
is negative).

Can this analysis be extended to multiple species? Yes, but
when we take the “slopes” now we have to compute S? of them
(where S is the number of species), giving raise to the so-called
Jacobian matrix of the system:

dN- dN- dN-
O O o

a;xbl]l a;;\l% a%s
I 04 s

] — JN; 0N, dNg (162)

dN dN dN

g O g
| N 0N, e dNg i

This matrix is a “function”. When we evaluate this function
at a given equilibrium, we obtain a matrix of numbers, which in
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ecology is called the “Community Matrix” (M). Its study was
pioneered by Richard Levins (wWhom we encountered before)
and by Robert May (whom we will encounter later).

Now that we have a matrix, what do we mean by “negative
slope”? It turns out that an equilibrium is locally asymptoti-
cally stable if the eigenvalues of the corresponding community
matrix have all negative real part.

6.2.1 Checking Local Asymptotic Stability

Here’s an “algorithm” detailing the steps needed to assess the
stability of the equilibria of a system. We will next apply the al-
gorithm to the Lotka-Volterra competition model studied above.

1. The starting point is a system of differential equations:

dAN;/dt = f..

2. Compute the equilibria, solving the system of equations
fi = 0. Each equilibrium is a set of N

3. Compute the Jacobian matrix J: for each function f; and
each species N;, compute df;/dN;.

4. For each equilibrium, substitute N; = N in ], obtaining
the community matrix M.

5. For each M, compute the eigenvalues. If they’re all with
negative real part, then the equilibrium is stable.

6.2.2  Asymptotic Stability for Two Populations

We have seen in Chapter 1 that the eigenvalues of a 2 x 2 matrix
can be written as:

_ (A= Vitr(A)2 —4det(A)

A 2

(163)

For stability, we need therefore to have negative trace and
positive determinant. Moreover, the eigenvalues are complex
whenever tr(A)% —4det(A) < 0. This divides the plane defined
by the trace and determinant in five areas (Figure 16):

e det < 0: unstable equilibrium (saddles).

e det > 0, tr > 0, tr*> > 4 det: unstable equilibrium (node).
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e det > 0, tr > 0, tr? < 4 det: unstable equilibrium (focus).

e det > 0, tr < 0, tr2 > 4det: stable equilibrium (node:

species return to equilibrium without oscillations).

e det > 0, tr < 0, tr? < 4det: stable equilibrium (focus:

species return to equilibrium oscillating).

The cases in which either tr or det are 0 are degenerate, and
of little ecological relevance. However, we're going to see one
of these cases in the next Chapter.

“

£ j (real positive eigenvalues) ~0
+ = unstable node - AN=
eigenvalues B[
1
J; unstable focus
B (complex eigenvalues, 5
7 | . Positive real part)
T g "
5 ) Andronov-Hopf bifurcation X
) 5
T =
saddle g LI— _
{real eigenvalues, different signs) % °!  stable focus
(complex eigenvalues, -
+|+ 3 J negative real part)
H
k- ( stable node
3 (real negative eigenvalues)

(=]

Figure 16: Stability portrait for two populations. 7 is the trace
of the community matrix, and A its determinant (from
dx.doi.org/10.4249/scholarpedia.2014).
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The system of equations is:

N N N
T =nNi(1-g —biag?) = h

i N N (164)
T =N (1- —bagr) =f2
And the equilibria:
N1 = 0, Nz =0 (165)

N1 = Kl, N2 =0 (166)
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Ny, =0, N, =Ky (167)

Ky — b1 HK K> — by 1K
Nj = ~L— P2t Ky — 021K

S S oo N e 168
1—b12by1 2T 1- b1,2b21 (168)

Take the partial derivatives

83_11:711 = I%UQ —2Nj — b1pNp) (169)
aa—z{;z = _K—rllbl,le (170)
5—1{]21 = _K—r;bz,lNz (171)
g_zj:fzz = %(Kz — 2Ny — by 1Ny) (172)

An thus the Jacobian becomes:

& (K1 —2Np — b12N2) % b12Ny
20212 % (K2 —2N2 — by 1N1)

2

J =

(173)

Let’s substitute the first equilibrium (N; = 0, N, = 0). After
some simplifications, we obtain:

M = [rl 0 ] (174)

Is this equilibrium stable or unstable? The trace is positive,
and therefore the equilibrium is necessarily unstable.

When we substitute the second equilibrium (N; = Ky, N, =
0), we obtain:

—11 —by o1
M= ’
[ 0 nm (1 - —b2é51> ] (75)
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the trace —r1; —12(b2 1K1 /Ky — 1) is and the determinantis (b, 1Ky /Ky —
1)r172. Therefore, the trace is negative and the determinant pos-
itive whenever b, 1K;/K; > 1. In this case the equilibrium is
stable (exactly what found before). The case (N7 = 0, N, = Kj)
is very similar (stable whenever by ,K,/K; > 1).

Substituting the most interesting equilibrium (N; = %, Ny =

Ky —by1Ky T,
T—b1 021 ), we find:

_ 1 %(bl,ZKZ —Kjy) %bl,z(bl,sz - Kj)
1-— b1,2b2,1 %bZ,l(bZ,lKl — Kz) %(bllKl — Kz)
(176)

which, assuming that N; > 0 and Ny > 0 is stable whenever:

M

K>
K; !

Kq

b -~
12 < K

by < (177)

Therefore, the analysis of the Jacobian matrix matches the
analysis we performed “graphically”: two competitors can co-
exist only whenever their amount of overlap in resource utiliza-
tion (measured as by » and by 1) is low enough.

— HOMEWORK \
For which values of « and 8 are these matrices stable?

M = -1 =2 (178)
L a _2 -
_ 6 3 i

M = 1
40 | (179)

HoMEWORK
For which value of by; can two competitors stably coexist
whenr; =1, =2,K; =10, K, =15and by, = 1/2?
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CONSUMER-RESOURCE INTERACTIONS

In the previous Chapter we saw the effect of competitive (—, —)
interactions among species. In this Chapter we study two cases
of consumer-resource interactions (4, —). Other possible inter-
actions among species include mutualism (mutually reinforc-
ing interactions) (4, +), amensalism (0, —), and commensalism
(0,+). Also, we have examined only models where two species
interact, while in nature we can find hundreds and even thou-
sands of species connected by very complex networks of inter-
actions (food webs and other ecological networks).

7.1 THE LOTKA-VOLTERRA PREDATOR-PREY MODEL

This model was proposed independently in 1925 by Alfred
Lotka, an American demographer, statistician and chemist and
in 1926 by Vito Volterra, an Italian mathematician. Volterra was
introduced to the problem of the fish in the Adriatic sea by his
son-in-law Umberto D’Ancona, a zoologist and naturalist. In
fact, during WWI the fishing in the Adriatic was completely
halted. This led to a “large-scale” experiment on the dynamics
of fish population that had at the time no mathematical expla-
nation. The Lotka-Volterra model is by far the simplest (and
quite unrealistic) representation of the interaction between a
prey and its predator. Although not currently used to model
real populations, it has inspired a century of developments in
population ecology.

We have a prey that would grow exponentially in isolation,
and a predator that in isolation would decay exponentially:

dN __
W—DCN

dP __
dP _ _5p

(180)

However, when the predator and the prey meet, with some
probability the predator catches the prey and consumes it (3PN).
This type of interaction is referred to as “mass-action” (bor-
rowed from chemistry). The idea is that the probability of an
encounter between a predator and a prey depends on the prod-
uct of their densities (as if predators and prey were atoms of
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gas in a jar). In fact, the probability increases whenever we in-
crease either the density of the prey or that of the predator. The
equations become:

dN __
;_li = N(a—pP) (181)
a = P(/N=9)
Where «, §,v,6 > 0. We see from the equations that although
the prey is decreased of BPN, the predator is increased of yPN.
This is to model the fact that consuming one prey could gener-
ate less than one predator (y < B, typical of macro-predators,
e.g., fish) or that one prey actually can be converted into many
predators (v > B, typical of micro-predators and parasites).

7.1.1  Analysis

As we did for the competition case, we start by determining
the equilibria and the isoclines of null growth. First, we want
to find the nullcline for the prey:

0= N(a—BP
(& — pP) (182)
P=3%
p
And that for the predator:
0=P(yN-9¢
(N (183)
g

Thus, the predators grow when the prey are above ¢/, while
the prey when the predators are below a /8 (Fig. 17). This is also
the only equilibrium where the species coexist. In the compe-
tition model, we could combine the lines in four ways, while
here we find only one case (Fig. 18). Given the direction of the
arrows, we expect the predator and prey to draw counterclock-
wise closed orbits in the phase plane.

If we start from the top right quadrant, both predator and
prey are abundant. However, because of predator pressure, the
number of prey declines (moves to the left) and the system en-
ters the top left quadrant. In this quadrant, both populations
decline, until the number of predators is reduced enough to en-
ter the bottom left quadrant. Here the number of prey increases,
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Figure 17: Nullclines for N and P in the phase plane.

until the system enters the bottom right quadrant. In the bottom
right quadrant both species increase in density until they en-
ter the top right quadrant, where the “cycle” starts again. The
system has only one equilibrium, which is “neutrally stable”:
depending on initial conditions, they system will cycle with a
given amplitude and perturbations will increase or decrease the
amplitude.

Depending on the initial conditions, in fact, the orbits can be
wider or smaller. The closer the system is to the equilibrium
point (intersection of the nullclines), the smaller the amplitude
of the cycle. For any possible initial point, the system will move
on an orbit, unless the curve crosses the zero density for preda-
tor or prey, in which case the system crashes.

If we plot the density of the predator and the prey in time,
we can see the boom and bust dynamics unfolding (Fig. 19). It
can be noted that the prey peaks before the predator. When the
predator depresses the prey to low values, it declines almost
exponentially until the prey has grown enough to support the
predator again.

7.1.2  Stability Analysis

We first write down the Jacobian matrix:

9 _
Jiu= w =ua—pP (184)
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Figure 18: Cycling predators and prey. To express the qualitative be-
havior, I drew ellipses. However, the actual shapes are
slightly more complex, as we’ll see below.

ON(x — BP)

Jiz = — oPp —BN (185)
oP(yN —9)
Jor = S = P (186)
OP(yN — ¢
P = PN oy (187)
_ | «—=BP BN
I= [ yP 7N—(5] (188)

We now substitute the equilibrium P* = a/f and N* =6/
to find the community matrix M:
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50 100 150 200 250

time

Figure 19: Cycling predators (red, dashed) and prey.

_px  _go _pBo

M= | I I (189)
a S_5 a0
B Ty B

Because the matrix has trace 0, then the equilibrium cannot
be stable, but it is not unstable either: it turns out to be neutrally

stable.

7.1.3  Ecological Orbits

When populations follow closed orbits, such as in this case, typ-
ically one can find a conserved quantity, called the “constant of
motion”, which describes the orbits and does not depend on
the time t. For example Kepler’s second law of planetary mo-
tion tells us that the areal velocity (i.e., the area swept by the
line connecting the sun and a planet) is constant for each planet:
this is due to the conservation of the angular momentum.
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How can we find a constant of motion for the Lotka-Volterra
equations? We take the equations and multiply both sides by

1/NP:
1 dN 1 o
Npar - Ve PPINp = F (150)
1 dp 1 )
Npar - PN TORp = T Y (191)

Then we multiply each equation for the “other” derivative:

dP 1 dN dP s«

NP Ar  df (ﬁ ~5) (192)
dN 1 dP_dN( 5 193
dFNPdt  dat\ N7 93

Note that now the left sides are identical. Thus:

dP [« dN 0
(5~ )‘E(_N+7)_O (194)

We are looking for a function that is conserved (call it E(N, P)).
This expression must be invariant in time: dE(N,P)/dt = 0
(given that is must be a constant). By chain-rule:

dE(N,P) _ dPOE(N,P)  dNJE(N,P) (169
it df  oP df  oN 95

Because we want dE(;t]’P) to be 0, we need:

dE(N,P)  /a
or (1_3 - 5) (196)
and:
0
% = (—% + 7) (197)

Because by definition E(N,P) = [ aEgZI\\]LP)dN = [ aEg/P) dp,

we can write:
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E(N,P):/(—%er) dN:/O(%—[%> iP (198)

And solving the integrals:
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E(N,P) = YN — 61log(N) 4+ K1 (N, P) = alog(P) — BP + K»(N, P)

(199)

where K; and K; are constants depending on the value of each
species. Therefore (subtracting):

dlog(N) +alog(P) —yN —BP =K (200)

where, finally, K is a constant of motion for the system, depend-
ing only on the initial conditions. The actual trajectories can be
seen in Fig. 20.

— HOMEWORK
After WWI, there was an increase in the number of predatory
fish in the Adriatic sea. However, non-predatory fish did not
increase as much. To solve this apparent contradiction, Vito
Volterra set up the famous set of differential equations.

e You can model the absence of fishing during wartime as
a decrease in ¢ and an increase in a. Why?

What happens to the equilibrium when fishing is halted?
Can this explain the pattern observed in the Adriatic sea?

e N* and P* are the equilibrium values for the population.

7.2 THE LYNX AND THE HARE

The Hudson’s Bay Company has kept meticulous records of the
pelts collected in a given year for more than 300 years. It has
been found a striking cycle of about 10 years in the number of
snowshoe hare and lynx pelts collected by trappers (Fig. 21).
For many years, this data has been used as evidence for Lotka-
Volterra cycles, but we will see this is not the case.

The cycles are so impressive because of their regularity, but
also because the species fluctuate as predicted by the model,
with cycles moving counterclockwise (Fig. 22) and predators
peaking after the prey.
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N
NN

0.0 0.5 1.0 15 2.0 2.5

Figure 20: Trajectory of the Lotka-Volterra predator-prey system. The
parameters are x = 1/2, p =1/4, v = 3/5and 6 = 3/10.
The equilibrium is (2,1/2). Starting the system closer to
the equilibrium yields trajectories that are closer to the
equilibrium.

However, a closer scrutiny reveals that these cycles cannot
be of the Lotka-Volterra type. First, the cycles show very little
geographical variations. That is, we can assume that in differ-
ent areas the parameters and local conditions would be chang-
ing, leading to different periods in the cycles. Second, and even
more convincing, the hares cycle with the same period also in
places where the lynx is absent. Therefore, the cycles have to
do with the hare, with the lynx tracking (but not causing) the
cycles. More detailed information can be found in the Reading
List.
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Figure 21: Fluctuations of lynx and hare populations - Hudson’s Bay

Company.

7.3 A MORE REALISTIC MODEL

We will now incorporate a carrying capacity for the first popu-
lation. In fact, when the density is high, the population is going
to be self-regulated, rather than limited by the number of preda-

tors.

dN _
dt

b — P (yN —5)

N (a —af — BP)

(201)

How does this addition modify the isoclines? The isocline for

the prey becomes:

0= (e« —aN/K—BP)

— &
P=4%

(1-%)

(202)
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Figure 22: Lynx and Hare - phase plane. The cycles move counter-
clockwise.

The isocline meets the horizontal axis at N = K (in absence
of the predator, the prey population grows logistically). The iso-
cline meets the vertical axis at P = a/p (when the population
is low, it is mainly controlled by predators. The isocline for the
predator is unchanged.

The two isoclines meet at:

0= (e —aN/K—BP)

(203)
0=P(yN —9) 3
which becomes:
N=2
T (204)
_ _ 6
P=g(r-%)
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This simple change modified the nature of the equilibrium.

Instead of having cycles, we now have a stable equilibrium. Any
trajectory starting in the positive quadrant will end up in the
equilibrium point (Fig. 23,. 24).

12

10

Predator Y
6
|

Prey X

Figure 23: Stable equilibrium for predator-prey system with carrying
capacity.

7.3.1  Stability Analysis
We have the equilibria (N* = 0,P* = 0), (N* = K, P* =0), and

_ 0 px _ «a _ 0
(N*_W’P _,8_7(7 K)
The derivatives for the Jacobian:

ON (a —a® — BP)
oN

N
NN = = — ZIXE — BP (205)
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Figure 24: Stable equilibrium for predator-prey system with carrying
capacity.

ON (a —a® — BP)

Jnp = 5P = —pN (206)
P(yN—-¢
JpN = % =P (207)
P(yN—9)
Jpp = — a9p YN -6 (208)
_ 24N _ _
] _ 114 20;[;3 ,BP ’_)/Nﬁi\lé (209)

Substituting the equilibrium where both species coexist we
obtain the Community Matrix:
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ad *
A

Therefore, the trace is always negative and the determinant
is always positive. As such, any predator-prey system with neg-
ative trace is stable.

— HOMEWORK 2
The Lotka-Volterra predator-prey model is by no means the
only model for predators and prey dynamics. For example, the
Leslie-Gower model can be written as:

ax _ _
;; X(a 'Bi) (211)
v (r-ct)

where X is the predator and Y is the prey.
1. Write the isoclines of null growth for the two species.

2. Draw the two isoclines of the space of phases (i.e., the X,
Y plane). Also, draw the “arrows” as we did in class. Is
there an equilibrium in which the species coexist?

3. Perform the stability analysis of this system.

READING LIST

e M. E. Gilpin (1973). Do Hares Eat Linx? The American Nat-
uralist 107:727-730.

e C. J. Krebs, R. Boonstra, S. Boutin, and A.R.E. Sinclair
(2001). What Drives the 10-year Cycle of Snowshoe Hares? Bio-
science 51:25-35.






Part III

MODELS FOR MANY INTERACTING
POPULATIONS

Typically population ecology books for undergradu-
ate courses start with one species and end with two
species. However, there are very many species on
Earth! As such, in this Part we’re going to explore
the dynamics of very large, complex ecological sys-
tems.
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8.1 HOW MANY SPECIES, HOW MANY INTERACTIONS?

I report here a brief passage from a recent commentary' by
Robert May (very appropriate, given that we’re going to talk
about his work later in the Chapter) on the number of species
on Earth:

It is a remarkable testament to humanity’s narcissism that we know
the number of books in the US Library of Congress on 1 February
2011 was 22,194,656, but cannot tell you —to within an order-of-
magnitude—how many distinct species of plants and animals we
share our world with. Something like 1.5 million distinct eukaryotes
have been named and recorded, but, lacking synoptic databases, even
this number is uncertain owing to synonyms (the same species sepa-
rately named in two or more different collections).

Part of the problem is that taxonomic effort is approximately divided
1:1:1 among vertebrates, plants, and invertebrates, whereas plant species
are roughly 10 times, and invertebrates 100 times, more numerous
than vertebrates. Mammals® and birds? are the best known, again re-
flecting our narcissism: their features are akin to our own.

In this issue of PLoS Biology, Mora et al.# offer an interesting new
approach to estimating the total number of distinct eukaryotic species
alive on earth today. They begin with an excellent survey of the wide
variety of previous estimates, which give a range of different num-
bers in the broad interval 3 to 100 million species. I have favoured a
number between 2 and 10 million, and if I had to buy a ticket in a
sweepstakes, I'd have chosen 5 million.

Mora et al.’s imaginative new approach begins by looking at the hi-
erarchy of taxonomic categories, from the details of species and genera,
through orders and classes, to phyla and kingdoms. They documented
the fact that for eukaryotes, the higher taxonomic categories are “much
more completely described than lower levels”, which in retrospect is
perhaps not surprising. They also show that, within well-known tax-

May R.M. 2011, Why Worry about How Many Species and Their Loss? PLoS
Biol 9:e1001130

That we know of, there are about 5,500 mammal species.

Birds are more speciose: about 10,000 recorded species.

Mora et al., 2011 How many species are there on Earth and in the ocean?
PLoS Biol 9:e1001127
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onomic groups, the relative numbers of species assigned to phylum,
class, order, family, genus, and species follow consistent patterns. If
one assumes these predictable patterns also hold for less well-studied
groups, the more secure information about phyla and class can be used
to estimate the total number of distinct species within a given group.

In this way, Mora et al. arrive at a global total of 8.7 million eukary-
otic species, with a standard error of £1.3 million. Most are terrestrial,
with 2.2 (f0.2) million being marine.

This is higher than my earlier “best guess”, but I like the simplicity
of this new method.

Hence, there are about 10 million species on Earth, and surely
less than 100 millions. But how many species are in the same
ecosystem? Figure 25 shows the estimated number of species
(and families) per biome. As you can see, tropical biomes can
house more than 10,000 species of vertebrates! This is especially
remarkable, given that only about 30,000 terrestrial/amphibian
species have been recorded. Imagine the incredible diversity
that is concentrated in some of the most amazing ecosystems
on Earth.

Species-rich ecosystems, such as tropical rainforests and coral
reefs, contain thousands of species. These species feed on each
other species giving rise to complex networks of feeding inter-
actions, called food webs. The largest published food web based
on empirical data (Weddell Sea ecosystem) contains about 500
species and more than 16,000 feeding interactions (Figure 26).

8.2 THE DIVERSITY-STABILITY DEBATE

For forty years, ecologists debated whether complex and di-
verse systems would be more or less vulnerable to disturbances
than simpler ones. The history of the problem is well summa-
rized by Kevin McCann>:

The relationship between diversity and stability has fascinated ecol-
ogists. Before the 1970s, ecologists believed that more diverse commu-
nities enhanced ecosystem stability. A strong proponent of this view
was Charles Elton, who argued that “simple communities were more
easily upset than that of richer ones; that is, more subject to destruc-
tive oscillations in populations, and more vulnerable to invasions”.
In fact, both Odum and Elton arrived at similar conclusions based
on the repeated observation that greatly simplified terrestrial commu-
nities are characterized by more violent fluctuations in population

5 McCann, K. S. 2000. The diversity-stability debate. Nature, 6783:228-233.
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Figure 1.2. COMPARISONS FOR THE 14 TERRESTRIAL BioMES OF THE WORLD IN TERMS OF SPECIES RICHNESS,

Famiry RicHNEsS, AND ENDEMIC SPECIES (C4 Fig 4.7)
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Figure 25: Biodiversity in different biomes. Figure from Millennium
Ecosystem Assessment.

density than diverse terrestrial communities. For example, invasions
most frequently occur on cultivated land where human influence had
produced greatly simplified ecological communities, and outbreaks of
phytophagous insects occur readily in boreal forests but are unheard
of in diverse tropical forests. These observations led Elton to believe
that complex communities, constructed from many predators and par-
asites, prevented populations from undergoing explosive growth. His
ideas were closely akin to MacArthur, who reasoned that multiplicity
in the number of prey and predator species associated with a popula-
tion freed that population from dramatic changes in abundance when
one of the prey or predator species declined in density. These early in-
tuitive ideas were challenged by the work of Robert May in 1973. May
turned to mathematics to rigorously explore the diversity-stability re-
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Figure 26: The food web of Weddell Sea. Dots are species and arrows
connect prey to their predators.

lationship. By using linear stability analysis on models constructed
from a statistical universe (that is, randomly constructed communi-
ties with randomly assigned interaction strengths), May found that
diversity tends to destabilize community dynamics.

83 THE MATHEMATICS OF THE COMPLEXITY-STABILITY DE-
BATE

My former student Si Tang and I just finished writing a review
of this long-standing problem in ecology. Here below I report
an adapted version of the forthcoming paper.
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8.3.1  Local asymptotic stability

We start with some preliminaries on local asymptotic stability.
We model an ecological community composed of S populations
as a continuous-time dynamical system, described by a set of
S autonomous (i.e., which do not explicitly contain the time
variable) ordinary differential equations, where each equation
describes the growth rate of a population:

d}ilit(t) = fi(X(¢)) (i=1,...,5) (212)

Here, X;(t) represents the density of population i at time ¢,
the vector X(f) is the vector of all population densities, and
fi is a function relating the growth rate of population i to the
density of the S populations. We say that the system is at an
equilibrium point X* whenever

dX;(t)

= fiX*) =0 (213)

for all i. Hence, if it is not perturbed, the system will remain at
the equilibrium point indefinitely. In ecology, we are interested
in feasible equilibria, for which X* > 0.

Stability analysis assesses whether infinitesimal perturbations
of the equilibrium can be buffered by the system. The equilib-
rium is said to be locally stable if all infinitesimal perturbations
die out eventually, and locally unstable if there exists an in-
finitesimal perturbation after which the system never goes back
to the equilibrium. The analysis is carried out by linearization
of the system at the equilibrium point. First, one builds the Ja-
cobian matrix J, whose elements J;; are defined as:

Jy(x) = L) (214)
Therefore, the coefficients of the Jacobian matrix are func-
tions of the densities of the populations (X). Then, one can sub-
stitute into the Jacobian (which is uniquely defined for each sys-
tem), the equilibrium point whose stability one wants to evalu-
ate (there could be many feasible equilibria). This produces the
so-called “community-matrix” M, defined as:
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af;i(X(t
X+ féxﬁ )> - (215)

Mij = Jij

Each equilibrium corresponds to a community matrix (note
that infinitely many systems at equilibrium can yield exactly
the same community matrix). The coefficient M;; measures the
effect of a slight increase in the population j on the growth
rate of population i. The eigenvalues of M, which have units of
time~! and therefore measure rates, determine the stability of
the underlying equilibrium point: if all eigenvalues have neg-
ative real parts, then the equilibrium is stable, while if any
eigenvalue has positive real part, the equilibrium is unstable,
as there is at least one direction in which infinitesimal pertur-
bations would drive the system away from the equilibrium.

Local asymptotic stability is limited in scope because it is
based on linearization. First, the results hold only locally, and
in the simple case outlined here, can be applied only to equi-
libria. Thus, local stability analysis has limited bearing for pop-
ulations operating out-of-equilibrium. Second, instability does
not necessarily imply lack of persistence: populations could co-
exist thanks to limit cycles or chaotic attractors, which typically
originate from unstable equilibrium points. Third, the basin of
attraction of a stable equilibrium point is difficult to measure
analytically, so that local stability holds with certainty only for
infinitesimal perturbations.

Given that the community matrix of an ecological system is
composed of real numbers, its eigenvalues are either real (of
the form A = a), or complex forming conjugate pairs (of the
form A = a + ib, where a and b are real numbers, and i is /—1).
Thus, if we plot the eigenvalues on a complex plane where the
horizontal axis is to the real axis, and the vertical the imaginary
axis, the eigenvalues are always symmetric about the real axis.
The stability of the equilibrium is exclusively determined by the
real part of the “rightmost” eigenvalue(s). We order the eigen-
values according to their real part, and we denote the rightmost
eigenvalue by A; and its corresponding real part by R(A1), so
that the equilibrium is stable whenever R(A1) < 0. Note that
the rightmost eigenvalue could in fact be several eigenvalues
with the same real part.
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8.3.2  Will a large complex system be stable?

To evaluate the stability of an equilibrium, we need to calculate
$ (A1), which in turn requires knowledge of the community ma-
trix. Then, we would need to know the exact form of the func-
tions f;(X(t)) as well as to calculate precisely the equilibrium
X*, both of which are required to construct M. This means that
any different set of equations, and each equilibrium of the same
set of equations, would lead to a different community matrix.

May’s insight was to skip the Jacobian matrix altogether, to
consider directly the community matrix, modeled as a large
random matrix, and to attempt estimating (A1) based on the
characteristics of the random matrix. Here we briefly review the
construction of such random matrices, and state May’s stability
criterion. In the next section, we will show how May’s result
can be derived using Random Matrix Theory.

For a species to be self-regulating, we need M;; < 0. This self-
regulation is equivalent to setting a carrying capacity (or other
similar density-dependent mechanism) for the population. May
set all the diagonal elements M;; = —1. He then set the off-
diagonal elements to 0 with probability 1 — C, and with proba-
bility C, he drew them independently from a distribution with
mean 0 and variance 2. Note that, although in the subsequent
literature this distribution is often assumed to be Normal, May
did not specify a shape for the distribution. In the next section,
we will see that this was an excellent idea, as the actual details
of the distribution do not matter in the limit of S large. The only
important quantities in this case are the mean and the variance
of the distribution.

For such matrices, May claimed that the eigenvalues all have
negative real parts with very high probability whenever:

oVSC < 1 (216)

and therefore, the equilibrium is very likely to be stable when-
ever the inequality is met. On the other hand, when the inequal-
ity is not met, then the equilibrium is unstable with high prob-
ability (Fig. 27). The 1 on the right-hand side of the inequality
descends from having —1 on the diagonal. For matrices with
—d < 0 on the diagonal, the inequality has d on the righ-hand
side.

This inequality set into motion the so-called “stability-complexity”

debate (also known as “May’s paradox”), given that in order
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Figure 27: Probability of stability (y-axis) as a function of ¢ (x-axis)

for random S x S matrices whose off-diagonal coefficients
are sampled independently from the uniform distribution
U[—+/30,/30] with probability C = 0.5 and are set to 0
otherwise. The diagonal elements are set to —\/f, so that
in this case the stability criterion reduces to ¢ < 1, ie.,
the transition from stability to instability should happen at
o ~ 1. We varied ¢ from 0.8 to 1.2 in steps of 0.01 (points).
The color indicates the size of the random matrices, with
S = 100 for red, 250 for green, and 500 for blue. The solid
lines are the best-fitting logistic curves. The probability of
stability is estimated using 200 randomizations for each
combination of ¢ and S. When S increases, the transition
becomes sharper, and for S very large it would approach a
step function.
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to satisty the inequality (216) a system cannot be too large (S
large), too connected (large C), or with a large variance of the
interactions (large o).

8.3.3 Circular law and stability

May was inspired by Wigner’s work on symmetric matrices
(for which all eigenvalues are real), even though the matrices
he studied are not symmetric. In his article, May signaled that
he was aware of the contemporary work on the non-Hermitian
(non-symmetric) case: he stated in a footnote that the work of
Metha and Ginibre were “indirectly relevant”.

The analog of Wigner’s “semicircle law” in the case of non-
symmetric matrices is known as the “circular law”. The circu-
lar law has a long and complicated history. It was possibly first
put forward by Ginibre in 1965, studied extensively by Girko,
proved by Metha for the normal case, extended considerably
by Bai, and finally proved in the most general case by Tao et al.
in 2010. In its latest and more general incarnation, the circular
law can be stated as follows. Take an S x S matrix M, whose
entries are independent and identically distributed (i.i.d.) ran-
dom variables with mean zero and variance one. Then, the em-
pirical spectral distribution (i.e., the distribution putting 1/S
probability mass on each eigenvalue) of M/+/S converges to
the uniform distribution on the unit disk as S — co.

Note that the statement does not contain any specifics on
the distribution of the coefficients: as long as the mean is zero
and the variance is one, the empirical spectral distribution of
the rescaled matrix M/+/S is expected to converge to the uni-
form distribution on the unit disk as S gets sufficiently large.
This property is known as “universality”. To demonstrate this
point numerically, in Fig. 28 we show the eigenvalue distribu-
tion of a 1000 x 1000 matrix whose entries are sampled from
a normal distribution N (0,1) (Fig. 28(a)) and from a uniform
distribution U[—+/3,/3] (Fig. 28(b)), so that both distributions
have mean zero and variance 1. We plot the eigenvalues of
M/ /S, and show that in both cases the eigenvalues are about
uniformly distributed on the unit disk of the complex plane.

One subtle point to consider is that the circular law only de-
scribes the behavior of the “bulk” of the eigenvalues of the
rescaled matrix M/+/S in the limit S — oo. As such, given
that in the empirical spectral distribution each eigenvalue only
contributes 1/S to the density—which becomes negligible as
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Figure 28: Circular law. (a) Eigenvalues of the matrix M/ VS, with
S = 1000. The x-axis represents the real part, and the y-axis
the imaginary part of the eigenvalues (points). The coeffi-
cients of M are sampled independently from a normal dis-
tribution A/(0,1). The eigenvalues are approximately uni-
formly distributed in a disk of radius 1 (orange). (b) As
(a), but with entries sampled from the uniform distribu-
tion U[—+/3, /3] (which has variance 1). (c) Eigenvalues of
the matrix M/+/SC, where the entries are sampled as in (a)
with probability C = 0.25, and are set to o otherwise. Nor-
malizing the matrix using v/SC yields eigenvalues falling
in the unit disk. (d) As (c), but with non-zero coefficients
sampled from the uniform distribution U[—+/3,v/3]. (e)
Eigenvalues of M, where the matrix is constructed as in (c),
but all the diagonal elements are set to —d = —10. When
the matrix is not normalized and has a non-zero diagonal,
the eigenvalues are approximately uniform in a disk cen-
tered at —d, and with radius o/SC. (f) As (e), but with
non-zero coefficients sampled from the uniform distribu-
tion U [—\@, \@], and diagonal entries set to —5.
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S — co—, the fact that the bulk converges to the unit disk does
not necessarily mean that all eigenvalues are contained in the
disk. This could greatly limit our ability to predict the position
of any single eigenvalue, including A. Fortunately, it has been

shown that if the distribution of the coefficients of M has mean
zero, variance one, and bounded (i.e., not infinite) fourth mo-

ment, then all the eigenvalues, as S — oo, are contained in the
disk. Because in biology we are always confronted with distri-
butions with finite moments, then we can confidently assume
that all the eigenvalues, for S sufficiently large, are contained

in the disk.

Hence, for sufficiently large S, all the eigenvalues of M are
approximately uniformly distributed in the disk in the com-
plex plane centered at (0,0) and with radius ry = V'S, so that
(M) ~ VS. Next, we relax the assumptions of the circular law
to derive May’s result. We start by analyzing the case in which

the variance of the entries of M is not one.

When the variance of the i.i.d. entries is ¢ > 0, not necessar-
ily one, we can rescale the matrix to achieve a unit variance by
simply dividing each entry by ¢. Combining this fact with the
circular law, we estimate (A1) ~ ov/S when S is sufficiently
large. Generally speaking, the variance of the entries, denoted
by V = Var(M;;), acts as a scaling factor for the radius of the
disk formed by the eigenvalues of M: the radius is multiplied
by an additional factor of v/V, compared to the unit variance

case.

Ecological systems are typically only sparsely connected: most
of the coefficients in the community matrix are zero, and only
few are non-zero. In this case, the universality of the circular
law turns out to be key: we can think of sampling the coef-

ficients from a “zero-inflated” distribution, such that the co-

efficients are zero with probability 1 — C, and with probabil-
ity C are taken from a given distribution with mean zero and
variance o2. While the mean of M;j sampled from such “zero-

inflated” distribution is still zero, the variance is reduced to

Co?. Consequently, the entries of M/+/Co? have unit variance,
and thus R(A1) ~ 0v/SC, as shown in Fig. 2(c-f). This intuitive
argument based on universality is confirmed by the rigorous
study of sparse matrices.

We next want to consider the effect of the diagonal entries
of M on its eigenvalue distribution. As we stated above, the di-
agonal elements of the community matrix M model self-effects,
and in the case of negative diagonal coefficients, we typically
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refer to “self-regulation”. Most models for consumer-resource
interactions would predict the diagonal elements of the com-
munity matrix to be non-positive. The diagonal of a matrix
determines the mean of the eigenvalues, due to the relation
Tr(M) = 21521 M;; = 215:1 A;. Hence, the eigenvalues have the
same mean as that of the diagonal elements, which we denote
by —d. In May’s case, we have d = 1, whereas for the circu-
lar law, since the diagonal entries of M are also assumed to be
drawn from the same distribution as the off-diagonal entries,
the mean of the diagonal is zero.

The fact that subtracting a constant from the diagonal ele-
ments shifts the distribution of the eigenvalue can be easily
proved by the following argument. Take a matrix A: its eigen-
values can be obtained setting det(AI — A) = 0, where I is the
identity matrix, and det(-) is the determinant. Denote the eigen-

values of A as AEA). Now take B = A — dI, i.e., a matrix that
is identical to A, but with diagonal elements B;; = A;; — d. The
eigenvalues of B can be found setting to zero det(AI — B) =

det(AI — A +dI) = det((A +d)I — A). As such A = A®) 1 g,

and thus AEB) = /\Z(A) — d: all the eigenvalues of B are equal

to those of A shifted by —d. The shape of the eigenvalue dis-
tribution is completely unaffected, but its position is shifted
horizontally.

The circular law has been studied for the case in which all
the entries (including the diagonal ones) are sampled from the
same distribution. However, numerical simulations show that
sampling all the off-diagonal elements from one distribution,
and all the diagonal entries from some other distribution with
mean zero and variance 02 < oo does not qualitatively alter the
results: the circular law still holds in the S — oo limit. For fi-
nite S, we recover the same result as long as the variance of the
diagonal coefficients oy is relatively small. When diagonal coef-
ficients have very large variance, we have to assess the matrices
numerically, as the result depends on the exact arrangement
of the coefficients along the diagonal. For simplicity, we may
set the diagonal entries of M to be identically zero (in which
case 0; = 0), and the eigenvalue distribution does not deviate
appreciably from the circular law, when S is sufficiently large.

These considerations are sufficient to recover May’s result.
The off-diagonal coefficients are zero with probability 1 — C,
and are sampled independently from a distribution with mean
0 and variance ¢? with probability C. The diagonal coefficients
are all set to —d. Then, for S large, the eigenvalues are about
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uniformly distributed in a disk centered at —d, and with ra-
dius ov/SC. For stability, we need the rightmost eigenvalue to
have negative real part, R(A1) < 0. Substituting the approxima-
tion from the circular law, we obtain R(A;) ~ VSCo? —d < 0,
which becomes ¢v/SC < d.

Having considered the effects stemming from the variance of
the off-diagonal entries, and from the distribution of the diag-
onal entries, we want to assess the effect of having a nonzero
mean for the off-diagonal entries on the eigenvalue distribution
of M. This case is especially important, since in natural systems
we do not expect the positive effects of resources on consumers
to exactly offset the negatives of consumers on resources. The
setting is as follows: with probability C, the off-diagonal coeffi-
cients are sampled independently from a distribution of mean
u and variance o2, and they are set to zero otherwise. Therefore,
we have E = [E[M;;] = Cp. The diagonal entries are all —d.

Note that any matrix with constant row sum has 1 as its
eigenvector and the row sum as the corresponding eigenvalue.
When M is randomly constructed with i.i.d. off-diagonal en-
tries and identical diagonal entries, although the row sum is
not a constant, they have the same expectation, i.e.,

E

ZMU] =—d+(S— 1)1E[Ml]] =—d+ (S—1)E (217)
j

for any row i. When M is large, its row averages are approx-
imately the same due to the law of large numbers. Thus, for
sufficiently large S, one of the eigenvalues of M will be close
to the expectation of the row sum given in Eqn. (217), as con-
firmed by numerical simulations. Regarding the other (S —1)
eigenvalues, numerical simulations also show that they are still
closely approximated by a uniform distribution on a disk. How-
ever, the disk has slightly shifted to account for the fact that
the mean of all eigenvalues must still be —d. The center of the
shifted disk is given by the mean of the S — 1 values, and it can
be computed subtracting —d + (S — 1)E from the sum of all the
eigenvalues —dS and dividing by S — 1. We also need to recom-
pute the variance of the off-diagonal elements of M, which be-
comes V = Var[M;] = E[M}] — E* = C(0® + (1 — C)p?). This
means that the rightmost eigenvalue on the disk is located ap-
proximately at —(d + E) + /SV, where —(d + E) is the center
of the disk and v/SV estimates its radius.
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We then estimate R(A;) for the nonzero mean case, when S
is sufficiently large. If p is negative (thus E < 0), then —d +
(S —1)E < 0. The rightmost eigenvalue of M corresponds to
the rightmost point of the disk (Fig. 29(a)), and in this case,
we estimate R(A;) ~ —d — E ++/SV. If u is positive, on the
other hand, we can have two situations: either the row sum
is large enough to send an eigenvalue to the right of the disk
(Fig. 29(b)), or it is weak enough such that the corresponding
eigenvalue falls inside the disk (Fig. 29(c)). In the first case,
R(AM) = —d + (S — 1)E, whereas in the second case (A1) ~
—d — E + v/SV. To consider all three scenarios, one can write a
criterion for stability that takes into account both the eigenvalue
corresponding to the row sum and the rightmost eigenvalue on
the disk.

max{vSV —E,(S—1)E} < d (218)

which, when writing the mean E and the variance V in terms
of C, u, and ¢ becomes

max{\/SC(cT2 +(1-C)u?)—Cu, (S—1)Cu} <d (219)

8.3.4 Elliptic law and stability

In the matrices above, the coefficients M;; and M;—expressing
the effects of species i on j, and that of j on i—are independent
and identically distributed. In ecological networks, we often
want to model pairwise interactions such as consumer-resource,
mutualism, and competition, in which cases M;; is not indepen-
dent from M]-l-. Take consumer-resource interactions: then, for
any M;; < 0, representing the negative effect of the consumer
j on the resource i, we would expect a Mj; > 0, measuring the
positive effect of the resource on the consumer. For this reason,
we would like to sample directly the coefficients in pairs, rather
than each coefficient separately. Doing so leads to the “elliptic
law”.

The elliptic law is a generalization of the circular law to the
case in which the pairs of coefficients (M;j, M;;) are sampled
from a bivariate distribution. A simplified statement of this law
is as follows. Take an S x S matrix M, whose off-diagonal co-
efficients are independently sampled in pairs from a bivariate
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Figure 29: (a) The eigenvalue distribution of a 1000 x 1000 matrix M

whose off-diagonal coefficients are 0 with probability 1 — C,
and with probability C are sampled from a normal distri-
bution of mean y and variance 2. The diagonal elements
are all set to —d. In this case, C = 0.75,d = 0, 0% = %,
and y = —0.1. The negative mean results in a slight shift
of the disk towards the right, and the appearance of an
eigenvalue on the left of the disk, in correspondence of the
expected row sum (orange, small circle). The disk centered
at —d + Cu and with radius \/SC(02 + (1 — C)u?2), contain-
ing all other eigenvalues, is also drawn in orange. (b) As
(a), but with u = 0.1. In this plot, the eigenvalue determin-
ing stability is the one on the right of the disk. (c) As (a),
but with y = 0.01. In this case, the eigenvalue correspond-
ing to the expected row sum is contained in the disk.
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distribution with zero marginal means, unit marginal variances,
and correlation p (ie, p = E[M;;M;]). Then, as S — oo, the
eigenvalue distribution of M /+/S converges to the uniform dis-
tribution on an ellipse centered at (0,0) with horizontal semi-
axis of length 1 + p and vertical semi-axis of length 1 — p.

Similar to the circular law, the elliptic law has a long history.
Again, this law was conjectured early on and was investigated
by Girko. This phenomenon was also independently discovered
in the physics literature. Recently, proofs of the universality of
the elliptic law started appearing in the mathematical literature.
The elliptic law is illustrated in Fig. 30(a).

Just as for the circular law, the elliptic law can be extended
to more general cases accounting for i) partially connected ma-
trices, ii) diagonal elements different from zero, iii) off-diagonal
coefficients sampled from a bivariate distribution with non-zero
marginal means, and iv) matrices with diagonal —d. Suppose
we are setting the off-diagonal pair (M;;, Mj;) to (0,0) with
probability 1 — C, and with probability C we are sampling the
pair from a bivariate distribution of mean ~ and covariance ma-
trix X:

2 ~ 2
helpE] e

The diagonal elements are set to —d. As before, we need to
track two eigenvalues: the one corresponding to the row sum,
and the rightmost eigenvalue on the ellipse.

To this end, we compute the relevant statistics for the off-
diagonal coefficients. The mean of the off-diagonal coefficients
is E = E[M;j] = Cp, their variance is V = Var[M;;] = C(¢0? +
(1 — C)u?), and, finally, the correlation between the pairs of
coefficients is

_ B[M;M;| —E[My]  po? + (1 - C)p?
p= Var[M;] T 2+ (1-0)2

Since each off-diagonal coefficient is equally likely to come
from either component of the bivariate distribution, the expected
row sum is —d + (S — 1)E (as for the circular case). Again, us-
ing the same strategy illustrated above, we find that the ellipse
is centered at —d — E, and has horizontal semi-axis v/SV (1 + p).
Using this notation, the criterion for stability becomes:

(221)

max{VSV(1+p) —E,(S—1)E} <d (222)
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Figure 30: Elliptic law. (a) Top: Eigenvalues of M, a 1000 x 1000 ma-
trix with zero on the diagonal and off-diagonal coefficients
(Mjj, Mj;) are sampled in pairs from the bivariate normal
distribution illustrated below, so that the marginals have
mean zero, variance one and correlation p = —2/7. (b) As
(a), but, for each pair, sampling one of the coefficients from
the half-normal distribution |[A(0,1)], and the other from
a negative half-normal. Because this leads to the same co-
variance matrix found in case (a), the eigenvalues have ap-
proximately the same distribution (top), even though the
coefficients have very different distributions (bottom). (c)
As (a-b), where, however for each pair (M;;, M;;), we sam-
ple one coefficient from the uniform distribution ¢[0, 2x],
and the other from U [—y — x,y — x]. Setting x = /2/7 and
Yy = /6 — 14/ 7, we obtain a covariance matrix identical to
cases (a-b), and thus the same ellipse.
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In the first application of the elliptic law to the stability of
ecological networks (Allesina & Tang, 2012), we showed that
when we model a food web in which the elements of the non-
zero pairs have opposite signs ((+, —)), then this necessarily
yields a negative correlation p, which in turn is highly stabi-
lizing. For example, in Fig. 30(b) we show the spectrum of a
matrix in which, for each non-zero pair, one coefficient is taken
from the half-normal distribution |[N(0,1)|, and the other is
taken from the negative half-normal —|N'(0,1)|. As such, E = 0,
V =1and p = —2/7: the sign-pairing produces a negative cor-
relation, which in turn is stabilizing. Moreover, thanks to the
universality property, any bivariate distribution with the same
covariance matrix would lead to identical results, as shown in
Fig. 30.
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